

 1 | P a g e

 Technical Note
http://www.OfItselfSo.com

http://www.OfItselfSo.com/BeagleNotes/AboutTheDeviceTree.pdf

v01.00 - Feb 2015

ABOUT THE DEVICE TREE

There is a fair amount of information about the Linux Device Tree on the Internet and those pages

all contain various and useful insights. When I was looking (Autumn 2014), there did not seem to be

anything intended for the beginner which brought all of the information together and presented

specific novice friendly advice on the Device Tree structure and how to decompile, configure and re-

compile the Device Tree. This paper has been written in an attempt to address that issue. In other

words, this document contains the information I would like to have had when I was first trying to

figure out the Device Tree.

The discussion below is primarily focused on the standard (as shipped) Debian Linux distribution for

the Beaglebone Black running the 3.8 kernel but many of the sections are generic and should be

reasonably usable for other micro-controllers and Linux versions.

BEFORE THE DEVICE TREE
Before the Device Tree, the Linux kernel contained the all of the information about the hardware of

every supported platform. This information, such as memory locations, interrupts, on chip

peripherals and many, many, other things was compiled into the kernel. This approach worked fairly

well when there were just a few platforms being supported.

Due to the fact that a description of every hardware platform was built into the kernel source, the

boot loader could tell the kernel which platform it was running on by passing in a value (known as

the machine type integer) at start up. The kernel would then internally look up the appropriate

platform parameters and then use them to figure out how to utilize the hardware available to it.

There are problems with this hard coded approach. The first problem is that recent times have seen

an ever proliferating number of small microcontroller boards each with their own set of hardware.

The Beaglebone Black and Raspberry Pi are two common ones – but there are many others. The

second, and related issue, is that the Linux kernel is centrally maintained (called the mainline) and

the maintainers were having a hard time keeping up. Eventually Linus Torvalds had enough and

issued one of his epic rants (warning NSW). Linus declared that henceforth no longer would each

and every new device be supported in the mainline kernel and that a new solution must be found.

The choice of forking the Linux kernel code and implementing non-mainline configurations for each

new micro-controller was really not a serious long term option and so the Device Tree concept was

developed. The Device Tree enables micro-controllers to use the same mainline kernel code along

with a separate, board specific, hardware configuration. Mainline Linux kernel version 3.7 and

higher all support the Device Tree.

With the Device Tree method, the boot loader reads the both the kernel image and the compiled

Device Tree binary into RAM memory and then passes the memory address of the Device Tree

binary into the kernel as part of the launch. The kernel, once it is running, looks at the memory

address, reads the device information, configures things appropriately and then gets on with the job

of running the Linux system.

Previously, the

Linux kernel

contained all of the

device

configuration for

each supported

platform.

The rapid

proliferation of

microcontroller

boards

necessitated a new

approach to

configuring each

target platform.

The Device Tree is

now used to

provide platform

specific

configuration

information.

The boot loader

now passes the

Device Tree

configuration into

the kernel at boot

up.

http://www.ofitselfso.com/
http://www.ofitselfso.com/BeagleNotes/AboutTheDeviceTree.pdf
http://article.gmane.org/gmane.linux.ports.arm.omap/55060

About the Device Tree v01.00 – Feb 2015

 2 | P a g e

HOW DO I KNOW WHICH DEVICE TREE BINARY MY SYSTEM IS USING?
The end of the previous section discussed how, when using the Device Tree, the boot process

consists of the boot loader reading both the Linux kernel and the Device Tree Binary into memory

and then passing the memory address of the Device Tree over to the kernel for processing. This

brings up an important point:

The Device Tree file the Linux Kernel reads is a BINARY file. It is not human readable.

The binary Device Tree file, which is typically given a .dtb file name extension, actually consists of

byte code (much like Java and .NET) and the kernel can process it by using a kind of internal

interpreter.

The fact that the Device Tree is a binary file implies that, for any given device tree configuration,

there is also a compiler and some source code somewhere. This is true, however, the source code

for your Device Tree will probably not be present on your system. You may have to go and find it in

a repository somewhere. It can be a bit difficult to figure out which source you should use as there

are a lot of them to choose from. However, there is also a de-compiler which can turn a Device Tree

Binary file back into source code and, as will be discussed shortly, you can use that to re-generate

the source code for any Device Tree Binary file. You can have a bit of a dig on your file system for

the Device Tree Source files if you wish. Device Tree Source files usually have a .dts file name

extension and they can be viewed in any text editor as they have a hierarchical structure similar to

XML. There is much more discussion of this in later sections.

So, to return to the original question, how do you know which device tree binary your system is

using? In short, on the standard out-of-the-box Beaglebone Black, the file is am335x-

boneblack.dtb and it can probably be found in the /boot/uboot/dtbs/ directory. This may

change for future revisions though or for different distributions. If you wish to confirm for yourself

which Device Tree Binary you are using then you will probably need to look in two places. First look

for the uEnv.txt file. This file, usually located at /boot/uboot/uEnv.txt, provides the

environment variables for the u-boot boot loader. In the uEnv.txt file you might find the .dtb file

specified directly (on some systems) or, more likely, you will see a line like:

loadfdt=load mmc ${mmcdev}:2 ${fdtaddr} /boot/uboot/dtbs/${fdtfile}

The Device Tree Binary file in the above example is hard coded to be in the /boot/uboot/dtbs

directory with the name specified by the ${fdtfile} variable. This variable is in turn provided by

the u-boot boot loader from its internal configuration (it is compiled in). You can see what the

${fdtfile} variable will be set to by finding the u-boot.img file and looking for the text

“fdtfile”. Since the u-boot.img file is a binary file the easiest way to do this is to use the

strings command on it.

strings /boot/uboot/u-boot.img | grep fdtfile

… on some systems the command returns the simple...

fdtfile=am335x-boneblack.dtb

… on others you might see a complex if-then-fi statement which figures out the .dtb file from a

list of various board types and you can work it out from that.

There are also other ways to do this. For example, you can boot into the u-boot command line and

use the printenv command to see the environment variables. This will not be discussed further

here – you can easily look it up if sufficiently interested.

The Device Tree file

which the kernel

reads at boot time

is a binary file.

Device Tree Binary

files have a .dtb

filename extension.

A Device Tree

Compiler converts

Device Tree Source

(.dts) files into

Device Tree Binary

files (.dtb).

On the Beaglebone

Black you are

probably using the

am335x-

boneblack.dtb

Device Tree Binary.

You can also look at

the uEnv.txt and

u-boot.img file to

find out what

Device Tree Binary

you are using.

About the Device Tree v01.00 – Feb 2015

 3 | P a g e

DECOMPILING THE DEVICE TREE
Once you have figured out what Device Tree Binary your system is using you can either look it up

online and download the source from a repository or you can just decompile the binary right back

into the .dts source from whence it came.

If you do decompile the Device Tree Binary file you might find that the source code does not look

exactly the same as the one you get if you downloaded it. This is because the decompilation process

produces a single flat tree whereas the source you download will probably have include files which

include multiple other files which eventually build the tree. Either way, the code equates to the

same thing – but if you just decompile the .dtb file you don't have the additional problem of

getting all the include files to work properly.

GETTING THE DEVICE TREE COMPILER/DE-COMPILER
The de-compiler for the Device Tree is also the compiler – each mode uses a different flag. You can

check to see if you have the Device Tree Compiler by issuing the command (as root)

dtc –v

If you get an error, you need to acquire the Device Tree Compiler. On the Beaglebone Black, until it

gets accepted “upstream”, the Device Tree Compiler is supplied by Robert C. Nelson and can be

obtained using the following sequence of commands (as root)…

wget -c https://raw.github.com/RobertCNelson/tools/master/pkgs/dtc.sh

chmod +x dtc.sh

./dtc.sh

…after installation, the dtc -v command should be fully functional.

~# dtc -v

Version: DTC 1.4.0-gf345d9e4

Now you are ready to decompile. First, change into the /boot/uboot/dtbs or other directory on

your system where the Device Tree Binary files are located. Note, there will probably be a lot of

.dtb files in there.

cd /boot/uboot/dtbs

Earlier you found out which Device Tree Binary you are using (most likely am335x-boneblack.dtb

on the Beaglebone Black) so we can decompile it with the command

dtc -I dtb -O dts am335x-boneblack.dtb > bbb.dts

We can view the file by looking at it in an editor.

nano bbb.dts

At this point you can recompile the .dts file back into a binary – but first a WARNING.

WARNING: CHANGING THE DEVICE TREE CAN RENDER THE SYSTEM

UNBOOTABLE.
If you modify the Device Tree Source you are messing with some serious and fundamental system

parameters. If you make a wrong or erroneous configuration change you can render your system

unbootable. That is “unbootable” as in “bricked”. NOTE: This is not just a theoretical possibility - you

are sure to do this eventually and so you must prepare ahead of time for this event.

One useful way to recover from a bad Device Tree configuration is to do your experimentation on an

operating system that boots off of a removable device. On the Beaglebone Black this is the microSD

card. If you boot off of an O/S on a microSD card and you make a change to the Device Tree and the

attempted reboot fails then all you need to do is remove the SD card and transport it to another

You can de-compile

a .dtb binary back

to the .dts source.

You will probably

have to download

the Device Tree

Compiler.

The Device Tree

Compiler is also the

de-compiler.

Modifying the

Device Tree

incorrectly can

cause your system

to fail to boot. You

should plan for this.

The de-compilation

of a Device Tree

Binary is pretty

straight forward.

About the Device Tree v01.00 – Feb 2015

 4 | P a g e

device (a PC with an SD card slot). On the second device you can just mount the microSD card and

use the command line or text editor to undo the changes. Once the changes have been reverted you

can replace the card into the Beaglebone Black and boot up – fairly short and simple.

If you boot off of internal memory such as EMMC your recourse is to create a bootable SD card,

boot from that, mount the EMMC memory as a directory and revert the changes there.

So here I go again – this is important enough to emphasise once more.

WARNING, WARNING, WARNING

As an amateur it is highly probable that if you modify the Device Tree often enough you will

eventually make a change that prevents your Beaglebone Black from booting. If you took care to

make and/or boot from a bootable SD card it is relatively easy to undo any changes. If your

Beaglebone Black boots from EMMC memory then you need to have a backup image on SD card you

can re-flash with or boot from.

ADVICE: Work from an O/S on a removable device. If you cannot do this

take the time to make a bootable backup on an SD card so you can boot

from it and mount the EMMC memory to fix things. In either case, practice

the reboot process before doing anything to the Device Tree. You will not

regret investing the time!

COMPILING THE DEVICE TREE
Before you compile the Device Tree Source into a Device Tree Binary please read the warnings in the

previous section. It is possible to make changes to the Device Tree which can, if you attempt to

reboot using it, cause the boot process to fail. You need to have a plan to cope with that ahead of

time.

Compiling a flat Device Tree Source file into a Device Tree Binary is pretty straight forward. The

example code below assumes that you have created a Device Tree Source file named bbb.dts by

decompiling the am335x-boneblack.dtb file as discussed in the previous section. If you are

attempting to compile Device Tree Sources downloaded from a repository on the Internet the

process is a bit more complex and is not discussed here.

First rename our existing am335x-boneblack.dtb file so we can recover it if things go wrong. All

of the commands are performed as root and the .dtb files are, in this example, in the

/boot/uboot/dtbs directory.

cd /boot/uboot/dtbs

cp am335x-boneblack.dtb am335x-boneblack.dtb_ORIGINAL

Now we recompile the source and rebuild the .dtb file

dtc -I dts -O dtb bbb.dts > am335x-boneblack.dtb

At this point we can restart by issuing the reboot command. IMPORTANT, heed the previous

warnings and make sure you can cope with a boot failure here.

reboot

Work from a

bootable removable

device or have a

backup you can

boot from.

Compiling the

Device Tree

Source is just a

different option

on the Device

Tree Compiler.

Note how this

section saves a

copy of the

original Device

Tree Binary.

About the Device Tree v01.00 – Feb 2015

 5 | P a g e

TESTING THE NEW DEVICE TREE
If all went well in the previous section, your Beaglebone Black has now rebooted and is running

exactly the same as it was before. This is not surprising as the compilation of the Device Tree Source

should create exactly the same Device Tree Binary as was previously decompiled.

Ideally, you'll want to make a change to see if you really have modified the correct Device Tree

Binary file. The easiest way to make a simple, visible change is to disable the heartbeat LED. The

heartbeat LED is the little green USR0 light on the Beaglebone Black that blinks at 2Hz to show you

that everything is OK.

The USR LEDs on the Beaglebone Black. Credit: http://beagleboard.org/getting-started

Here is how to modify the Device Tree Source to disable the USR0 LED. Open up the bbb.dts

source file you previously decompiled in a text editor and have a look at the structure of the file. We

will go into what everything means in a future section but for now find the section that looks like

led0 {

 label = "beaglebone:green:usr0";

 gpios = <0x5 0x15 0x0>;

 linux,default-trigger = "heartbeat";

 default-state = "off";

 };

These lines will be buried well down in the Device Tree Source file. If you are using the nano editor

use the CTRL-W key to look for the text “heartbeat”. Change the trigger statement so it says

“none”. For example...

 led0 {

 label = "beaglebone:green:usr0";

 gpios = <0x5 0x15 0x0>;

 linux,default-trigger = "none";

 default-state = "off";

 };

… then re-compile the Device Tree Binary ...

dtc -I dts -O dtb bbb.dts > am335x-boneblack.dtb

… and reboot

reboot

After the reboot you should find that the heartbeat led no longer flashes but that all other

functionality on the Beaglebone Black remains intact.

If you make a syntax error (missing semi-colon for example) the device tree compiler will not

successfully compile the source so you don't have to worry about creating a bad Device Tree Binary

due to a minor typo. Having said that, if you make a configuration change which is syntactically

correct but which is erroneous or which conflicts with some other setting you may well find the

system no longer boots or if it does boot then large swathes of functionality are missing.

Probably at this point you should re-edit the bbb.dts source file and turn the heartbeat LED back

on. The heartbeat LED is one of the signals that indicate the Beaglebone Black has booted correctly

and you'll probably want to check it after some of the future reboots.

As a test we can

modify the Device

Tree to stop the

USR0 LED from

blinking.

We always have to

reboot after re-

compiling the

Device Tree Binary.

You should now

undo any changes

you made and

reboot.

http://beagleboard.org/getting-started

About the Device Tree v01.00 – Feb 2015

 6 | P a g e

THE STRUCTURE OF THE DEVICE TREE
If you open up a Device Tree Source file in a text editor you will see what appears to be a very

complex, but highly ordered, layout of information. A summary of the structure will be presented

here and you can find a comprehensive, but possibly not so novice friendly, discussion at the

devicetree.org website using the link http://www.devicetree.org/Device_Tree_Usage

NODES AND PROPERTIES

The Device Tree source file consists of nodes and key-value pairs known as properties. Nodes can

have sub-nodes as well. For example:

/ {

 node1 {

 a-string-property = "A string";

 a-string-list-property = "first string", "second string";

 a-byte-data-property = [0x01 0x23 0x34 0x56];

 child-node1 {

 first-child-property;

 second-child-property = <1>;

 a-string-property = "Hello, world";

 };

 child-node2 {

 };

 };

 node2 {

 an-empty-property;

 a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */

 child-node1 {

 };

 };

};

Credit: http://www.devicetree.org/Device_Tree_Usage

In general, if you see a set of curly braces “{}” you know you are looking at a node. If you see an

equals sign “=” then you are dealing with a key-value pair property and if there is no equals sign

then the presence of the name of the property is considered sufficient to invoke the desired

configuration option and no values are necessary.

Also note that properties can have multiple values associated with them. Sometimes these multiple

values are comma delimited and sometimes they placed inside a data structure group and space

delimited. The data structure groups are angle brackets “<>” (which means 32 bit integer numeric

data is enclosed) and, less commonly, square brackets “[]” (which enclose binary data). Strings are

always enclosed in double quotes. It is possible that a property can contain multiple items of

different types all on the same line – although it is uncommon to see this in practice.

You will sometimes see the int32 values enclosed within in angle brackets “<>” referred to as cells.

OK. Now that we have the basics let's look at a Device Tree Source file which was just decompiled

from the am335x-boneblack.dtb on the Beaglebone Black standard distribution. It is too long to

display here in its entirety. However the first part looks like…

/dts-v1/;

/ {

 #address-cells = <0x1>;

 #size-cells = <0x1>;

 compatible = "ti,am335x-bone", "ti,am33xx";

 interrupt-parent = <0x1>;

 model = "TI AM335x BeagleBone";

 chosen {

 };

 aliases {

 serial0 = "/ocp/serial@44e09000";

 serial1 = "/ocp/serial@48022000";

 serial2 = "/ocp/serial@48024000";

 serial3 = "/ocp/serial@481a6000";

 serial4 = "/ocp/serial@481a8000";

The Device Tree

consists of a

hierarchical list of

nodes, sub-nodes

and properties.

Nodes are delimited

by curly Braces

“{}”. Properties

can have zero, one

or many values.

Any data inside of

angle brackets “<>”

are space delimited

32 bit integers.

http://www.devicetree.org/Device_Tree_Usage
http://www.devicetree.org/Device_Tree_Usage

About the Device Tree v01.00 – Feb 2015

 7 | P a g e

 serial5 = "/ocp/serial@481aa000";

 };

 memory {

 device_type = "memory";

 reg = <0x80000000 0x10000000>;

 };

 cpus {

 cpu@0 {

 compatible = "arm,cortex-a8";

 operating-points = <0xf4240 0x149970 0xc3500 ……>;

 voltage-tolerance = <0x2>;

 clock-latency = <0x493e0>;

 cpu0-supply = <0x2>;

…. and so on for another 1300 lines.

At first glance this code seems to be quite incomprehensible. However, there is a lot we can do to

reduce the complexity. First, we note that if we remove everything contained within the level 1

nodes it can be seen there is actually a relatively simple outer structure…

/dts-v1/;

/ {

 chosen {...};

 aliases {...};

 memory {...};

 cpus {...};

 pmu {...};

 soc {...};

 pinmux@44e10800 {...};

 ocp {...};

 fixedregulator@0 {...};

 __symbols__ {...};

};

Assuming you are approaching the Device Tree as user who simply wants to adjust a few settings to

enable some of the Beaglebone Blacks on board peripherals (such as the GPIO's, SPI ports or PWM’s

etc.) then most of these level 1 nodes can be completely ignored.

In order to configure the various peripheral subsystems the only nodes whose contents are likely to

be of interest are the pinmux@44e10800{} node and the ocp{} node.

So let’s have a look at the ocp{} node and its contents. This node is very large – most of the .dts

file in fact. However stripping things down let’s look at the top and then skip a large chunk of the

contents till we get down to the section that configures our old friend the USR0 LED which was

discussed previously.

 ocp {

 compatible = "simple-bus";

 #address-cells = <0x1>;

 #size-cells = <0x1>;

 ranges;

 ti,hwmods = "l3_main";

 linux,phandle = <0x15>;

 phandle = <0x15>;

 <<<< many, many subnodes skipped in here>>>>

 gpio-leds {

 compatible = "gpio-leds";

 pinctrl-names = "default";

 pinctrl-0 = <0x3>;

 led0 {

 label = "beaglebone:green:usr0";

 gpios = <0x5 0x15 0x0>;

 linux,default-trigger = "heartbeat";

 default-state = "off";

 };

 <<<< subnodes skipped in here>>>>

 };

 <<<< many more subnodes skipped in here>>>>

 };

The full Device Tree

is well over 1300

lines on the

Beaglebone Black.

If we collapse

everything but the

top level nodes we

see that the

structure appears

to be much simpler.

Most likely you will

only ever have to

concern yourself

with the

pinmux@44e10800

and ocp nodes.

About the Device Tree v01.00 – Feb 2015

 8 | P a g e

THE COMPATIBLE PROPERTY

At the Linux level, all access between the user and the hardware is ultimately performed by a device

driver which provides a device interface. The device driver is custom written to know how to access

the hardware. So one would logically expect the Device Tree to specify the device driver somewhere

and, indeed, that is usually the first property we see under a node. Note in the example above under

the ocp node there is a line which says...

compatible = "simple-bus"

… and under the gpio-leds sub-node there is a similar line property which says

compatible = "gpio-leds";

The compatible property is telling the kernel which device drivers it can use to handle that

particular node. There are a lot of device drivers available and it is possible that, for any particular

node, there may be several which will work. In fact it is possible to specify a list of compatible device

drivers (hence the name of the property). The kernel will read this line, choose the first one, and

interrogate every device driver it knows about. If it gets a match it uses that driver, if it gets no

matches it uses the next value in the property (if any) and looks for that.

If a node does not have a compatible property it can be assumed that the node and property

information is simply being fed into the device driver of the node above it in the hierarchy.

We can look up the gpio-leds device driver specified by the gpio-leds sub-node if we wish – a link

is...

 https://www.kernel.org/doc/Documentation/devicetree/bindings/leds/leds-gpio.txt

… and in fact it is interesting to do so because we see that not only does it tell us all of the

information it needs but even includes some example Device Tree configurations.

This leads us to an important point about the Device Tree. All of the information below the gpio-

leds{} node is intended for the gpio-leds driver. This device driver consumes it and uses it to

configure itself.

 gpio-leds {

 compatible = "gpio-leds";

 pinctrl-names = "default";

 pinctrl-0 = <0x3>;

 led0 {

 label = "beaglebone:green:usr0";

 gpios = <0x5 0x15 0x0>;

 linux,default-trigger = "heartbeat";

 default-state = "off";

 };

 led1 {

 label = "beaglebone:green:usr1";

 gpios = <0x5 0x16 0x0>;

 linux,default-trigger = "mmc0";

 default-state = "off";

 };

 led2 {

 label = "beaglebone:green:usr2";

 gpios = <0x5 0x17 0x0>;

 linux,default-trigger = "cpu0";

 default-state = "off";

 };

 led3 {

 label = "beaglebone:green:usr3";

 gpios = <0x5 0x18 0x0>;

 default-state = "off";

 linux,default-trigger = "mmc1";

 };

 };

The compatible

property tells the

kernel which device

driver to use.

A new compatible

property on a sub-

node tells the

kernel to use a

different device

driver.

https://www.kernel.org/doc/Documentation/devicetree/bindings/leds/leds-gpio.txt

About the Device Tree v01.00 – Feb 2015

 9 | P a g e

Similarly the ocp{} node information is passed to the simple-bus compatible driver – at least

until it encounters a sub-node (like the gpio-leds node) with its own compatible property. At

that time the information below that node is passed into the new driver. Thus the Device Tree can

be viewed as a strictly defined cascading hierarchy of device drivers, configuration information and

sub-nodes with their own device drivers and configuration information.

The reason why each node in the Device Tree Source appears to have a

different structure is because the configuration information they contain is

intended for different device drivers - each with its own requirements.

Within any one device driver, as can be seen by the led0, led1, led2 and led3 nodes in the

example above, the configuration information is remarkably consistent.

The important point to remember here is that, unless you are a system

architect, you do usually not need to know what most of the nodes in the

Device Tree Source do and what their configuration information means.

In other words, don't let all the complexity worry you. The structure and meaning of the nodes you

need to know about is documented and most likely any changes you make will be a variation on an

example you found somewhere else.

OCP AND THE PINMUX
The CPUs of most modern microcontrollers (including the AM335x 1GHz ARM Cortex-A8 in the

Beaglebone Black) are typically built to handle a multitude of requirements. For example, designers

of a microcontroller board using that CPU may wish to have multiple GPIO's, SPI, I2C, PWM, A/D,

HDMI, USB ports and many others. The architects of the CPU are aware of this and typically

implement as many of these devices as they can just to make sure their chip gets selected for

people’s designs. These types of device are called On Chip Peripherals (hence the acronym OCP) and

although they are called peripherals they are actually built right onto the silicon with the CPU itself.

Each OCP device will probably require one or more physical inputs or outputs on the exterior of the

CPU so that the rest of the system can interface with it. The problem with this is that, given all the

OCP devices which are implemented, there are many more OCP device I/O requirements than there

are pads on the exterior of the CPU.

The designers of the CPU, reasoning that most people implementing their CPU will never need to

use all OCP devices at once, have implemented a rather elegant solution to the problem. They have

set things up so that OCP devices share the I/O pads on the CPU. For example, the same I/O pad is

alternately used by the following OCP devices: GPIO0_5, I2C1 SCL, mmc2 sdwp, SPI cs0 and

others. There are up to 8 possible usages of any CPU pad and the actual usage is settable at runtime.

The name for the possible usages is called the “mode” (mode0 to mode7).

Nomenclature: the input or output of the OCP device is called a “pin”. The actual

physical I/O pin on the CPU through which the OCP pin may or may not be

eventually exposed is called a “pad”.

Be aware of that when you read the documentation that much of the time when you see the word

“pin” it is an OCP device I/O line internal to the CPU which is being referenced. It must be noted that

sometimes you will see the physical pad on the CPU referred to as a “pin” and once the CPU pad has

been routed out and exposed on a header block (the Beaglebone Black P8 or P9 headers for

example) it is also commonly referred to as a “pin”. The meaning of the word “pin” is just one of

those things you have to infer from the context and which can drive you insane if you don't realize

what is going on.

The content of the

nodes in the Device

Tree is as variable

as it is because the

information is

intended for

different device

drivers.

Don’t let the

complexity worry

you. You do not

need to know what

most of the nodes in

the Device Tree do.

There are many

functional I/O

devices included

with the CPU. These

are called On Chip

Peripherals (OCP).

There are so many

OCP devices that

they have to share

the I/O lines on the

CPU. This means

you cannot

simultaneously

enable two OCP

devices that use

shared resources.

The I/O line on an

OCP device is

called a “pin”. The

physical connection

on the exterior of

the CPU is called a

“pad” – but is also

referred to as a

“pin” often enough

that you have to

take care to figure

out what is really

meant.

About the Device Tree v01.00 – Feb 2015

 10 | P a g e

The internal CPU component that does the switching of OCP pins onto physical pads is called the

PinMux. The PinMux configuration (and hence “pinmux mode”) for all OCP devices is set by the

Device Tree at boot – although it can also be dynamically adjusted later by software running in

kernel mode (usually device drivers). Note that normal user mode software (even running as root)

cannot adjust the PinMux mode settings.

Actually, the PinMux is itself an OCP device – however it is so important and fundamental to the

operation of the rest of the OCP devices it is usually handled separately. This is why you see

individual ocp{} and pinmux{} level 1 nodes in the Device Tree.

Let’s look at how the PinMux works. In concept it can be visualised as a simple switch

The PinMux can be Visualised as a Simple Rotary Switch.

Of course the PinMux is not a mechanical rotary switch like that – it is all solid state on the silicon

wafer of the CPU – but the effect is the same. In the example above, if you put PinMux pin 87 in

mode 7 you will get GPIO0_5 present on the CPU pad A15 and this has in turn been routed out to

pin 17 on the P9 header by the designers of the Beaglebone Black. If you put the PinMux pin in

mode 0 then the SPI Port0 CS0 line will be present on pin 17 on the P9 header. It should be

noted that not all CPU pads go to the P8 and P9 headers – some go straight to the USB ports, HDMI

port or EMMC memory etc. depending on what the designers of the Beaglebone Black (not the CPU)

wanted to do with them.

It is important to realize that the OCP pins which use any particular CPU pad are hard coded – really

hard coded - as in burnt onto the silicon. This means that any specific OCP device must use a pre-

defined set of CPU pads and this cannot be changed. If two OCP devices use the same CPU pad then

you cannot enable both at the same time. You can visualize this in the above diagram by realizing

that the PinMux switch cannot both point to GPIO0_5 and SPI0_CS0 at the same time.

The above reason is why you will sometimes see comments like “if you wish to use GPIO_77 you

must disable the HDMI video”. The reason is that both of those two OCP devices share the same

PinMux pin in different modes. You simply cannot use both at once and there is no way to change

this.

Note: an OCP device which is not enabled in the PinMux will still sometimes “work” in the sense that

you can access them via their Device Drivers. However, if the PinMux mode is incorrect, any I/O

lines that device uses will not be connected to anything.

PHANDLES, PINCTRL AND PINCTRL-0

If you have been following the discussion in the previous section it will now be clear that in order to

use any OCP device we really have to configure two things in the Device Tree. We have to configure

the device in the ocp{} node in order to launch and configure its device driver and we also have to

configure the PinMux in the pinmux@44e10800 section to make its pins visible on the CPU pads

(and hence elsewhere on the board).

By inference, we can guess that the two sections are probably not isolated. The OCP section is going

to need to know what the PinMux node is doing so that it can configure itself appropriately. It can

The PinMux

controls which of

the OCP device pins

are routed to the

pads on the bottom

of the CPU (and

hence to the rest of

the board).

GPIO0_5

SPI0_CS0

CPU Pad A15

Header P9 Pin 17

I2C1_SCL

MMC2 SWP

…

…

PinMux Pin 87

The PinMux mode

determines which

OCP device line is

active on any pin.

The PinMux pins

each OCP device

uses are hardcoded

by the designers of

the CPU and cannot

be changed.

OCP Devices which

are not properly

configured in the

PinMux can still

sometimes be

accessed but will

not work.

OCP Devices

usually need

configuration

information in the

PinMux node of the

Device Tree as well

as the OCP node.

About the Device Tree v01.00 – Feb 2015

 11 | P a g e

also be assumed that if one OCP device needs to refer to the goings on in the PinMux then probably

others will need to do so as well.

Given the hierarchical nature of the Device Tree it is also logical to assume that there is probably

some sort of mechanism to label a node and then reference that label if nodes elsewhere need to

refer to it. This is the purpose of the phandle or linux,phandle properties.

The values of the phandle or linux,phandle properties are 32 bit integers which uniquely

identify the node. You will often see both used and they mean the same thing.

pinmux@44e10800 {

 compatible = "pinctrl-single";

 …..

 pinmux_userled_pins {

 pinctrl-single,pins = <0x54 0x7 0x58 0x17 0x5c 0x7 0x60 0x17>;

 linux,phandle = <0x3>;

 phandle = <0x3>;

 };

 …..

In the above example the pinmux_userled_pins{} sub node of the pinmux@44e10800{} node

has a phandle of 3 (the decimal value of 0x3) and this can be used to refer to that node elsewhere

in the Device Tree. Also note the use of the angle brackets “<>” to denote the fact that the phandle

value is a 32 bit integer.

References elsewhere in the Device Tree will use various property names to refer to a phandle but

one of the most common, the one that is used to refer to pinmux@44e10800{} node phandles, is

called pinctrl-0. We can see this used in the gpio-leds{} sub node of the ocp{} node

 ocp {

 …..

 gpio-leds {

 compatible = "gpio-leds";

 pinctrl-names = "default";

 pinctrl-0 = <0x3>;

 led0 {

 label = "beaglebone:green:usr0";

 gpios = <0x5 0x15 0x0>;

 linux,default-trigger = "heartbeat";

 default-state = "off";

 };

 …..

Clearly the gpio-leds device driver needs to know about the state of the PinMux in order to properly

configure the USR0 led and it finds the information it needs by looking up the node with the phandle

of 0x3. It knows to do this because it is told to do so by its pinctrl-0 property.

You might be wondering why the number 0x3 is used as a unique identifier. In fact it is possible to

use a text designator. We could configure the Device Tree to use a label like “MY_LEDPINS” if we

wished. In that case the pinmux_userled_pins node would be defined like...

MY_LEDPINS: pinmux_userled_pins {….}

and the reference to it would be implemented as

pinctrl-0 = <&MY_LEDPINS>;

As far as I can tell textual labels are uncommon – I haven't seen them used very often and I am not

sure why. They are preserved though the compilation and de-compilation process with the

Beaglebone Black Device Tree Compiler but perhaps they were not with earlier versions so that may

be the reason.

The phandle

property provides a

label for other

nodes in the Device

Tree.

The pinctrl-0

property is typically

used to reference a

phandle in the

PinMux node

It is possible to use

text labels instead

of numbers to

reference

phandles.

About the Device Tree v01.00 – Feb 2015

 12 | P a g e

THE UNIT ADDRESS

In the Device Tree Source you will sometimes see nodes which contain an “@” character in their

name. For example:

ocp {

 …..

 gpio@44e07000 {...

 gpio@4804c000 {...

 gpio@481ac000 {...

 gpio@481ae000 {...

 …..

The text after the “@” character is called a Unit Address and its meaning is relevant only to the

device driver accepting the Device Tree information. Unit Addresses typically represent a location in

the parent nodes address space. In the above example, the Unit Address specifies an actual physical

memory address location, however, it does not have to do so. It could be possible to see a list of

subnodes labelled like…

ocp {

 …..

 led@0 {...

 led@1 {...

 led@2 {...

 led@3 {...

 …..

… if the addresses 0, 1, 2, 3 were somehow meaningful to the device driver being configured in the

node above.

THE DEVICE TREE STRUCTURE AND THE DEVICE FILES
As has been mentioned previously, the Device Tree forms a hierarchical tree structure. It is

interesting to note that once the Device Tree has been processed, the information it contains is

brought out and presented at the file system level as a series of directories and files.

The directory /proc/device-tree is the root of the tree and represents the root of the Device

Tree. If we look at the contents of the /proc/device-tree directory we see...

ls -l /proc/device-tree

-r--r--r-- 1 root root 4 Apr 23 20:33 #address-cells

-r--r--r-- 1 root root 4 Apr 23 20:33 #size-cells

dr-xr-xr-x 2 root root 0 Apr 23 20:33 __symbols__

dr-xr-xr-x 2 root root 0 Apr 23 20:33 aliases

dr-xr-xr-x 5 root root 0 Apr 23 20:33 bone_capemgr

dr-xr-xr-x 2 root root 0 Apr 23 20:33 chosen

-r--r--r-- 1 root root 25 Apr 23 20:33 compatible

dr-xr-xr-x 3 root root 0 Apr 23 20:33 cpus

dr-xr-xr-x 2 root root 0 Apr 23 20:33 fixedregulator@0

-r--r--r-- 1 root root 4 Apr 23 20:33 interrupt-parent

dr-xr-xr-x 2 root root 0 Apr 23 20:33 memory

-r--r--r-- 1 root root 21 Apr 23 20:33 model

-r--r--r-- 1 root root 1 Apr 23 20:33 name

dr-xr-xr-x 56 root root 0 Apr 23 20:23 ocp

dr-xr-xr-x 11 root root 0 Apr 23 20:33 pinmux@44e10800

dr-xr-xr-x 2 root root 0 Apr 23 20:33 pmu

dr-xr-xr-x 3 root root 0 Apr 23 20:33 soc

If you compare the above list with Device Tree Source file you will immediately see that every level 1

node is represented as a directory. If we change into the ocp directory and then in to the gpio-

leds directory we can again see some very familiar constructs.

-r--r--r-- 1 root root 10 Apr 23 22:33 compatible

dr-xr-xr-x 2 root root 0 Apr 23 20:37 led0

dr-xr-xr-x 2 root root 0 Apr 23 20:37 led1

dr-xr-xr-x 2 root root 0 Apr 23 20:37 led2

dr-xr-xr-x 2 root root 0 Apr 23 20:37 led3

-r--r--r-- 1 root root 10 Apr 23 20:37 name

-r--r--r-- 1 root root 4 Apr 23 20:37 pinctrl-0

-r--r--r-- 1 root root 8 Apr 23 20:37 pinctrl-names

The text after an “@”

character in a node

name is called the

Unit Address. It

refers to an internal

memory structure

inside the device

driver that

consumes the

Device Tree

information.

The contents of the

Device Tree are

exposed in a

directory structure

by the kernel after

boot. This provides

a debug reference.

About the Device Tree v01.00 – Feb 2015

 13 | P a g e

The properties are just normal files and we can view the contents if we wish. Issuing the command...

strings compatible

.. returns the text ...

gpio-leds

… and this is exactly the contents of that property in the Device Tree source.

As has been seen, the /proc/device-tree directory tree provides a nice file system mapping of

the contents of the Device Tree Binary the kernel processed at boot. However certain configuration

items can be changed at runtime by user space programs interacting with device drivers. The

PinMux settings are a good example of this. None of these changes will be reflected in the

/proc/device-tree directory tree.

If your Linux kernel has been compiled with the CONFIG_DEBUG_FS flag (and on the Beaglebone

Black default installation this is the case) then the current state of the device configuration can be

found in the /sys/kernel/debug directory tree. This tree exists to provide the current device

configuration information to user space programs and as changes are made these files will change.

All of the contents of the /sys/kernel/debug will not be discussed here – it is much too large a

subject for this document and the file system structure is not nearly so clean a one-for-one mapping

as is seen in the /proc/device-tree directory tree.

The current configuration state of the PinMux can be found in the file …

/sys/kernel/debug/pinctrl/44e10800.pinmux/pins

 … if we look at the contents of this file with a cat command we can see there are a number of lines

like…

…

pin 85 (44e10954) 00000037 pinctrl-single

pin 86 (44e10958) 00000062 pinctrl-single

pin 87 (44e1095c) 00000062 pinctrl-single

pin 88 (44e10960) 0000002f pinctrl-single

pin 89 (44e10964) 00000027 pinctrl-single

…

Note the line referencing pin 87. This is the PinMux pin discussed earlier in the OCP and PinMux

section. Interpreting this line is the subject for another document but we can see from the

00000062 item that the PinMux mode for this pin is “2” and by referring to other documentation

we can note that this means that the SCL line of the I2C2 device is currently being routed out though

CPU pad A15 and hence is visible on Header 9 Pin 17. Any attempt to use the GPIO0_5 OCP device

will be disappointing. It will not work – you won’t get an error but any read or write will be

meaningless as its I/O line simply is not connected to anything.

There are other directories and files which map onto the OCP devices in the Device Tree. One

commonly used one is the /sys/class/gpio directory which allows user space programs to

manipulate the OCP GPIOs as if they were files. This is known as the SYSFS file system. It is important

to realize that these files are created and maintained by the device drivers and when you read and

write to them you are actually interacting with the device driver itself. There are lots of these types

of file systems and they have different names and different access mechanisms. For example, the

file system which can interact with the SPI ports as if they were files is called SPIDEV and if it has

been enabled in the Device Tree the files to access it can be found at /dev/spidev*

Note, if you manipulate the device files they still will not work if the OCP device is not enabled in the

PinMux. For example, if you change GPIO0_5 to be an output you can set its state to 0 or 1 all you

wish via SYSFS but if the PinMux mode is not correct you will see no change on pin 17 of the P9

header. Manipulating an OCP device via SYSFS (or SPIDEV or whatever) has absolutely no effect on

the PinMux.

The

/proc/device-

tree directory tree

only shows the

contents of the

Device Tree at boot.

It does not show

later configuration

changes.

The

/sys/kernel/debu

g directory tree

exists to provide the

current device

configuration

information. As

changes are made

these files will

change.

Various device

drivers also

implement their

own device files

and sometimes file

system trees.

About the Device Tree v01.00 – Feb 2015

 14 | P a g e

DEVICE CONFIGURATION CHANGES AT RUNTIME
Recall from previous sections that the Device Tree is used by the kernel at boot time to configure

itself and also that it uses the Device Tree to find and launch the appropriate device drivers for

various system purposes. Much of the Device Tree configuration information is consumed by the

device drivers themselves rather than by the kernel directly.

All of this configuring and launching of device drivers takes place in kernel mode and user space

programs (even ones running as root) simply do not have the permissions to do this sort of thing.

Having said that, there are ways user space programs can configure OCP devices (and launch device

drivers) – equally there are some things that just cannot be done.

The typical way user space programs interact with OCP devices is by talking to the relevant device

driver. This is what is happening when you use SYSFS to enable a GPIO, configure it as an output and

set its state to high. When you “export” the GPIO and set its state and direction in the appropriate

files you are actually talking to a device driver which is intercepting these instructions and doing the

real work for you. Other device drivers offer only a minimal file system type interface (SPIDEV for

example) and expect you to use ioctl() calls to interact with the device. The way you interact

with the various device drivers depends on the device driver and it must be said that the

ioctl()method is more common than the easy interface SYSFS presents.

As mentioned previously, neither SYSFS nor SPIDEV or other device drivers interact with the PinMux

and so you still need to properly “mux” all of the pins the device needs in order to get that OCP

device to work.

The OCP devices are resident in the memory of the Beaglebone Black at various well documented

locations. This memory location is called the base address for the device. The configuration state of

these devices is set by manipulating various memory locations offset from the device base

addresses and these are known as the device registers. Each OCP device is different and hence the

registers for each device are different. You have to read the AM335x Sitara Processor Technical

Reference Manual to find out what registers to set for a device and what all the individual bits

mean.

Because the OCP devices are resident on the memory bus, it is logical to assume that if a user space

program can figure out a way to write to a specific memory location it could then configure the OCP

devices directly. In fact there is such a method, known as “Memory Mapped Access”, which uses the

device file /dev/mem. Essentially the /dev/mem file presents the Beaglebone Black’s entire

addressable memory as a file and you can get and set bits in the memory using simple file reads and

writes from a user space program (but you have to be root). Of course this is just accessing what is

effectively a different device driver – one which presents the RAM memory as the file /dev/mem -

and it is really this device driver which has the appropriate access permissions.

Be aware that, while using the /dev/mem file is possible, it is not considered “the Linux

Way” and hence its use is deprecated. Memory mapped access introduces device

specific items (memory addresses etc.) into code which should be transportable.

The PinMux is an OCP device and it is memory mapped into /dev/mem but you still cannot set the

pinmux mode for an OCP device by twiddling bits in its registers. This is explicitly forbidden – it

doesn’t error if you try it, but it doesn’t work either. You can read the PinMux registers though.

User space

programs typically

interact with OCP

devices via a device

driver.

You still need to

configure the

PinMux to use an

OCP device. The

individual device

drivers typically do

not do that.

The OCP devices

are mapped in to

the system memory.

It is possible to

write to them by

writing to the

/dev/mem file.

You still cannot

write to the PinMux

in the /dev/mem file.

This is explicitly

forbidden.

About the Device Tree v01.00 – Feb 2015

 15 | P a g e

CAPE MANAGERS AND THE BEAGLEBONE BLACK
As discussed in the previous section, there are not a lot of good options to set device configurations

at runtime from a user space program. In particular, even though you can configure various OCP

device options via its corresponding device driver, if the Device Tree did not start that device driver

you cannot configure anything because that device driver is not running. For example, if the Device

Tree does not specify an SPI 0 port then the corresponding SPIDEV device file will not exist. So, in

theory at least, the Device Tree has to specify both the OCP device and PinMux it otherwise you

have very limited options. It should be noted that you can use the Memory Mapped Access method

without the device driver present but that tends to require some intricate code.

It should also be noted that editing the Device Tree is a non-trivial thing and if you noted the

warnings in previous sections you will know that it can render your Beaglebone Black un-bootable if

you get it wrong. Of course you will have also practiced recovering from that before messing with

the Device Tree.

In recognition of this, the developers of the Beaglebone Black devised a mechanism called the “Cape

Manager”. Essentially this is a very clever device driver which can accept a fragment of Device Tree

Binary from a user mode program, and then adjust the systems device configuration using its kernel

mode privileges. This includes starting and stopping device drivers. The ultimate effect is as if the

fragment was contained within the full Device Tree binary which was processed at boot time.

The fragments of Device Tree are called Device Tree Overlays and are typically given a .dto

filename extension when compiled. Because the Device Tree Overlays were intended to provide a

runtime configuration mechanism for “Capes”, which are the name for daughter boards (or shields

etc.) in the Beaglebone world, the interface mechanism is called the Cape Manager. The Cape

Manager presents a nice file system based interface intended to permit manipulation of the Device

Tree at runtime in a style which is analogous to the method used by the SYSFS driver to enable

manipulation of the GPIOs.

The Device Tree Overlays necessarily have some of their own syntax. However stripping off the

outer wrapper it can be seen they look a lot like sections of the full Device Tree.

/plugin/;

/ {

fragment@0 {

 target = <&am33xx_pinmux>;

 __overlay__ {

 foo_pins: foo_pins {

 pinctrl-single,pins = <0x0A8 0x1f>;

 };

 };

};

fragment@1 {

 target = <&ocp>;

 __overlay__ {

 foo {

 compatible = "corp,foo";

 bar = <5>;

 power-gpio = <&gpio2 18 0x0>;

 pinctrl-names = "default";

 pinctrl-0 = <&foo_pins>;

 };

 };

 };

};

Credit: http://elinux.org/BeagleBone_and_the_3.8_Kernel

Knowing, as we now do, that there are two sections of the Device Tree which need configuring for

any OCP device we can pretty much see what is going on here. In fact, it is also not too difficult to

see how it would be possible to just copy and paste the internal sections of each fragment into the

appropriate section (PinMux and OCP) of the Device Tree Source if we wished to do so (or vice

versa). Most developers of Beaglebone Black Capes provide Device Tree Overlay source files – so if

The Beaglebone

Black implements a

Cape Manager

system which

permits fragments

of the Device Tree

to be applied at

runtime by user

space programs.

Device Tree

Overlays typically

contain two

sections. These

sections

correspond the

PinMux and OCP

nodes of the full

Device Tree.

http://elinux.org/BeagleBone_and_the_3.8_Kernel

About the Device Tree v01.00 – Feb 2015

 16 | P a g e

you are on a system without a Cape Manager, it is useful to know how to cut and paste the code

into a full Device Tree File.

The Cape Manager/Device Tree Overlay system is pretty much a Beaglebone Black invention and is

not present on most other systems. Primarily it was intended to enable the easy runtime

configuration required by Beaglebone Black Capes and there is even a mechanism which enables the

Cape to provide its own Device Tree Overlay to the Beaglebone Black – much like the self-

configuration option of USB devices on PC’s. It should be noted that this self-configuration

mechanism is rarely used.

One of the major benefits (to my mind) of Device Tree Overlays is that they make no permanent

change to the system. This is very useful if the Overlay does not work and the Beaglebone Black

locks up. In that event, all that is required is a simple reboot.

One problem with Device Tree Overlays is that they are very hard to implement by the system

developers. To enable support for Cape Manager/Device Tree Overlays on a Linux system requires

intricate modifications to many kernel source files. Simply put, the internal workings of Device Tree

Overlays are very complex. This goes a long way towards explaining why Device Tree Overlays are

only available on the Beaglebone Black and even then only on the 3.8 kernel. Work is underway on a

port to the 3.14 kernel but as of the time this document was written it was not available yet.

Another problem with the Cape Manager/Device Tree Overlay mechanism on the Beaglebone Black

is that it can have problems with conflicts. Recall the earlier discussion of how many devices can use

the same PinMux pins – if multiple Capes require the same device (or conflicting devices on the

same PinMux pin) then hard to diagnose problems arise. There is a new Device Tree Overlay system

under development, called Cape-Universal, which attempts to address the conflict issues. I am not

sufficiently familiar with this mechanism and so will not discuss it here.

All in all the Cape Manager/Device Tree Overlay system is a pretty beautiful thing – a work of

considerable skill and invention. However, it is still a work in progress and is not yet available on the

later kernels. It will be very interesting to see what develops in the future.

The Cape Manager

and Device Tree

Overlay system is

only available on

the Beaglebone

Black.

The Cape Manager

is only available on

the 3.8 kernel. It is

not yet available on

the 3.14 kernel –

although work is in

progress.

The Cape Manager

system sometimes

has problems with

device conflicts –

work is also

underway to

develop solutions

for this.

