

WINDOWS MEDIA

FOUNDATION:

 GETTING STARTED IN C#

A Step-by-Step Guide to Writing Windows Media

Foundation Applications in C#

 Nic Cyn

This book is available as a free PDF download or in print on Amazon at

nominal cost.

Windows Media Foundation

Getting Started in C#

If you have a problem which requires

Windows Media Foundation to solve it,

well then, you really have two problems.

There is many a true word spoken in jest and, joking aside, the same is true for any of

the technologies you might use to solve that problem. DirectShow and Video

Foundation for Windows, the Windows predecessors, are not really any easier and

neither are the similar tools on the Linux or Apple platforms. All of them present a

pretty steep learning curve for the novice. This book is an attempt to simplify the

process; it will document the things you need to know and give you the skills which will

enable you to write Windows Media Foundation (WMF) applications in the C# language.

For K, who puts up with a lot…

Copyright © 2019, OfItselfSo.com

All Rights Reserved

The source code accompanying this book is open source and released under the MIT

License. This book is copyrighted and may not be distributed, or copied (in whole or in

part) without permission of the author.

A print version of this book it is available on Amazon at nominal cost.

Version 1.1 March 2019

TABLE OF CONTENTS

Introduction ..1

How the Problem Will Be Simplified ...2

Why Was this Book Written..4

The Tanta Project ...4

Overview of WMF ..6

WMF And Windows Versions ...7

MF.Net ...8

Installing MF.Net ...10

Windows Media Foundation Architecture ...11

The Pipeline Architecture ...15

The Pipeline Internals ..19

The Reader-Writer Architecture ...23

The Reader-Writer Synchronous Model ..26

The Reader-Writer Asynchronous Model ..26

The Hybrid Pipeline-Writer Architecture...27

Other Non-Pipeline WMF Components ..28

The Transcode API ...29

The Output Protection Manager ...29

The IMFCaptureEngine and IMFSensorDevice ...29

Which Architecture to Use? ..29

MF.Net Programming Fundamentals ...31

You must use an [MTAThread] Code Decoration ..31

Enabling the Multi-Threaded Apartment Model ..32

Coping with [MTAThread] Problems ..33

Initializing Windows Media Foundation ..34

Shutting Down Windows Media Foundation ..34

Most WMF Objects are Interfaces ..35

IUnknown ... 36

Getting an Interface from an Interface .. 37

The Difference between MFGetService and QueryInterface 38

WMF Object Creation is Indirect .. 39

Releasing COM Objects .. 40

Releasing Class Variables .. 42

GUIDs .. 44

About Attributes .. 46

PropVariant .. 47

Creating and Populating Attributes ... 49

Enumerating Attributes .. 52

Attribute Code Conversion from C++ .. 53

HResults ... 54

The C++ vs C# Code Structure .. 55

The WMF Components ... 59

Fundamental Processing Objects ... 60

Media Sources ... 60

Media Sinks ... 61

An Interface Digression .. 61

Creating WMF Components ... 63

Creating a Media Source from a Device .. 64

Creating a Media Source from a Source Resolver .. 65

Creating a Media Sink from an Activator ... 66

Creating a Media Sink On a File ... 67

The Pipeline ... 68

A Simple Pipeline .. 69

A Pipeline with Two Branches ... 70

Reader-Writer Data Processing ... 73

The Hybrid Architecture Data Processing .. 74

Pipeline Errors and Events ...75

Creating the Media Session ...76

The Media Session Callback Object ...77

Independent Pipeline Objects ...79

Media Streams and the Presentation ...79

Why Does a Media Source contain Multiple Streams ..81

Obtaining Presentation and Stream Descriptors ..84

Media Types and Sub-Types ...87

Getting Media Types from the Stream Descriptor ...88

Creating Your Own Media Type ...89

Cloning a Media Type ..93

Enumerating the Attributes of a Media Type ...93

FOURCC Codes ..94

Topologies ..95

Topologies and Media Sub-Types .. 100

Partial Topologies .. 102

Creating a Topology Node for a Media Source ... 104

Creating a Topology Node for a Media Sink Using a Stream Sink 106

Creating a Topology Node for a Media Sink Using an Activator 107

Getting The WMF Object From a Topology Node .. 109

Transforms ... 110

Adding Transforms To a Topology ... 111

Registering Transforms.. 112

Finding Transforms.. 113

Synchronous and Asynchronous Transforms ... 113

Samples, Frames and Buffers .. 114

The Raw Media Data ... 115

Using Marshal to Access Raw Media Data ... 116

Accessing Raw Media Data with Unsafe Code ... 117

Manipulating Raw Media Data with Externs ... 118

The Media Buffer .. 119

Creating a Media Buffer .. 121

The Media Sample .. 122

Creating a New Media Sample .. 123

Callback Objects ... 127

The Media Session Callback Object ... 130

Source Reader and Sink Writer .. 135

Using The Source Reader ... 137

Obtaining Media Samples from a Source Reader .. 138

Synchronous vs Asynchronous Source Readers ... 138

Creating a Source Reader .. 139

Creating a Source Reader on a File .. 140

Creating a Source Reader on a Device ... 142

The Source Reader and Format Conversions ... 143

Sink Writer ... 144

Providing Media Samples to a Sink Writer .. 145

Creating a Sink Writer ... 146

Creating a Sink Writer On A File .. 147

The Sink Writer and Format Conversions .. 149

WMF – First Contact.. 150

The TantaVideoFormats Sample Application .. 151

The Video Picker Control .. 152

Enumerating the Video Capture Devices .. 154

Enumerating the Attributes of a Video Device ... 159

Practical WMF Architectures ... 167

Implementing the Pipeline Architecture... 168

The Standardization of Pipeline Components.. 170

The Sample Pipeline Architecture Source .. 170

Starting up the Pipeline ... 178

Shutting Down the Pipeline ... 180

Errors in the Pipeline ... 182

Dealing with Multiple Streams .. 183

Creating an MP4 File Sink .. 184

Implementing the Reader-Writer Architecture ... 188

The Synchronous Reader-Writer Architecture ... 189

Dealing with Multiple Streams .. 198

The Asynchronous Reader-Writer Architecture ... 201

Implementing a Hybrid Architecture .. 205

Rendering Audio and Video ... 211

An Overview of the SAR .. 212

Audio Volume and Muting .. 214

An Overview of the EVR .. 217

Older Versions of the EVR ... 217

The EVR and Direct3D ... 217

Multiple Streams in the EVR .. 218

A Summary of the Capabilities of EVR ... 218

The TantaFilePlayback Samples .. 219

The ctlTantaEVRStreamDisplay Control .. 220

The ctlTantaEVRFilePlayer Control.. 224

The Video Window Drawing Surface... 226

The Video Window Appearance ... 228

About Aspect Ratios .. 228

The EVR and Aspect Ratios .. 230

The EVR Video Window Size and Position .. 230

Software Magnification ... 232

Handling Size Change Events ... 232

Playback Control .. 233

Starting, Pausing and Stopping the EVR .. 233

Getting the Duration and the Current Progress ... 235

Seeking Forward and Back in the Stream .. 238

Fast Forwarding and Rewinding the EVR ... 241

Taking a Snapshot of the Video Display .. 247

Working With Transforms ... 253

The Tanta Transform Sample Projects .. 256

Basic Transform Operation .. 258

The Tanta Transform Base Classes .. 259

Transforms and Multiple Streams ... 261

Transform Streams and Media Types .. 263

Processing in the Transform.. 265

Events and Messages .. 267

Raw Data Handling in the Transform .. 267

Writing Text on a Video Frame ... 271

Adding Transforms To the Pipeline .. 274

Adding a Transform When You have the Source Code .. 275

Adding a Transform When You have An Activator ... 276

Adding a Transform When You have a Known GUID ... 277

Adding a Transform By Creating it from a GUID .. 277

Connecting Transform Nodes.. 278

Making a Transform Available .. 279

COM Interop Decorations ... 280

Registering A Transform Manually .. 282

Registering A Transform During Compilation .. 283

Registering A Transform via an Installer Application ... 284

Making a Transform Discoverable ... 284

Local Discoverability ... 286

Enumerating the Transforms on the System .. 288

The TantaTransformPicker Sample Application ... 288

Registry Based Transform Information .. 289

Enumerating the Transforms ... 292

Transform Based Information.. 296

Passing Information In and Out of a Transform .. 298

Information Exchange Via Direct Calls ... 299

Information Exchange Via Attributes ... 300

Information Exchange Via Reflection and Late Binding .. 305

Information Exchange Via COM and Marshal .. 310

Capturing Camera Data.. 311

Timestamp Rebasing .. 312

Capture with a Reader-Writer Architecture .. 313

Setting the Output Media Type on the Source Reader ... 313

Configuring an MP4 Sink Writer .. 318

Capture with a Hybrid Architecture .. 322

Creating a copy of a Media Sample ... 326

The Tanta Sample Code ... 328

Downloading the Tanta Sample Projects ... 329

Tanta Sample Applications .. 329

Converting Between C++ and C# Code Examples ... 332

Code Conversions in General Function Calls ... 333

Getting a Bool ... 333

Setting a Bool .. 333

Getting an Enum ... 334

Setting an Enum .. 334

Getting a GUID .. 335

Setting a GUID ... 335

Getting an Int .. 335

Setting an Int ... 336

Getting an IntPtr ... 336

Getting a Long: ... 337

Setting an MFInt (DWORD Ptr) .. 337

Getting a String ... 338

Setting a String ... 338

Getting a Struct... 339

Setting a Struct ... 339

Getting a Typed Object ... 340

Setting a Typed Object .. 340

Misc. Code Conversions ... 341

Converting a Byte[] to a Struct .. 341

Converting a Struct to a Byte[] .. 341

Copying the Data from an IntPtr ... 341

Getting the Size of a Struct ... 342

Converting an Array of Structs .. 342

 1

Windows Media Foundation:
Getting Started in C#

Chapter 1

INTRODUCTION
Working with Windows Media Foundation isn’t really that difficult. It does seem

complex at first but once you get the hang of it you’ll find that you are mostly just

connecting things together in various predictable ways. Ultimately WMF is just a

collection of tools that do various specific things and once you get a sense of how

everything works you can just bolt the components together in standard ways to

achieve a result - much like you would build something with a set of Lego™ blocks.

The techniques illustrated in this book, along with the associated sample code, will

provide you with the concepts and skills you need in order to write your own Windows

Media Foundation applications.

As you acquire more experience with WMF, it soon becomes clear that much of the

perceived complexity is only due to the fact that Windows Media Foundation takes a

rather circuitous route to configuring the objects it uses. Thus you might see ten or

fifteen lines of code (including error checking) used to configure an object where you

would expect to see two lines in a normal C# program. Once you realize what is

happening you can mentally resolve a large group of statements as a single action.

Remember the joke at the start of this book about how, if you have a problem that

needs WMF, you really have two problems? Actually, since Windows Media Foundation

Introduction

2

makes extensive use of Component Object Model (COM) technologies, you could more

accurately say you really do have three problems. If you are a super expert in COM you

will probably have a much easier time of it in WMF. In reality, many of the odd ways

Windows Media Foundation does things are really just the odd COM ways of doing

things. If you are a novice don’t worry, we will not discuss COM any more than is

absolutely necessary in this book. In truth, an understanding of COM is not that

essential as long as every time you think something like “why would they do that” you

are willing to just blame it on COM and move on. As an example, when we discuss things

like Attributes and Activators later on, you will see what is meant by this – they are pure

COM. The implementers of WMF just used these tools because they were there and

they did not want to re-invent the wheel.

The above discussion of COM leads us into an interesting point. Another thing that can

cause confusion in WMF is that there is often more than one way to achieve a particular

goal. For example, it is possible to instantiate a WMF object by getting some other COM

object (an Activator) to do it for you. Or you can make a call to a static function and

have the COM layer build and return it. In other cases you simply specify a GUID

identifier and the object will be dug out of the registry and created for you. Finally,

sometimes, you can also just hand crank it and create the object manually. It should be

noted that this last option (using the C# new operator) is only rarely available for objects

of any significance. Not all methods are available for all WMF objects and if there are

multiple methods available, some examples you will see on the Internet will do it one

way and some will do it in another way. Typically, there is no one “correct way” –

although some methods are easier than others in certain circumstances. After you

understand the reasons why things are happening the way they are, and realize that

there are probably other options available, then things will simplify considerably.

Once you get a few of the basics sorted out, and are a bit further along the learning

curve, you will probably find that Windows Media Foundation is not so difficult as you

first imagined and is a very powerful tool indeed.

HOW THE PROBLEM WILL BE SIMPLIFIED

Getting up-to-speed with any new technology is usually a non-trivial undertaking. There

is a lot to take in and there are numerous concepts which must be learned first in order

to make other ideas make sense. This, it would seem, is the major difficulty when

learning from help files alone – they do not present the information as a logical

progression in which each subsequent discussion uses the previously presented

 Introduction

 3

material. Of course, you cannot really fault help files for that – they are intended to

provide point solutions to specific problems - not tutorials.

This book is going to present, as far as is possible, the building blocks of the technology

first. Once those are known, you will have enough background knowledge to

understand the more complex techniques. Usually the Windows Media Foundation

topics will be presented in multiple passes. If a concept is presented in too much detail

at once, a reader unfamiliar with the topic simply will not possess enough reference

points to make sense of the information. In other words, if things are too detailed, you

will read the text but it will not “stick”. A very light overview on a first pass and then a

subsequent section with more details provides a better learning experience. Of course,

this method has the downside that a lot of information is repeated. Try to consider this

repetition to be a “feature” rather than a “bug”.

We are also going to ignore large chunks of technology that, in theory, you should really

know about but which, in reality, will divert mental resources away from the

fundamentals of Windows Media Foundation. Given the earlier discussion in this

chapter you probably think the previous sentence refers to COM – and you are right, it

does. In practice, you don’t really need to know all that much about COM until you are

ready to know about it. However, there are lots of other things that will be ignored too.

For example, you also don’t really need to know the details of the NV12 or YUV video

formats. When the time comes for you to dig about inside the guts of a YUV video frame

you can just hit the Internet to find copious resources that explain it in detail –

discussing it at this point will just get in the way. You may also be wondering how a C#

application interacts with a C++ based system such as WMF? Well, the answer is yet

another rather clever bit of technology called Interop Services. We are going to blithely

ignore COM Interop in general and Marshaling in particular and just wave the whole lot

away. It just works and going into the details of the magic will only serve to distract you.

There is a suite of Windows Media Foundation example projects written in C# which

illustrate the various techniques available with this book. Not all of that code is

discussed in this book as some projects are variations upon the same theme – but the

intention is that they all illustrate some Windows Media Foundation concept. The Tanta

Sample Code appendix at the end of this book has a detailed description of each sample

application, a discussion of why it was written and the WMF techniques that C# Solution

demonstrates. In addition, some of the more generally useful sections of code have

been factored out into a common library. This library may be included in your own

projects in order to save you re-writing code.

Introduction

4

A significant amount of effort is going to be devoted to describing how to bolt the

various components together. This, after all is the sort of practical information that gets

applications written. There will be lots of source code examples and the location of

every item of source code will be annotated with the relevant filename so that you can

review the code section within the context of a C# class and project. In addition, you will

be able to run the complete application and step through the code with a debugger

(debugging works very well in the .NET version of WMF).

Of course, the Tanta Sample code should not be the only source code examples you

should look at. When you begin writing your own code, you will probably want to hit

your favorite search engine and do a bit of digging to get more information on a

particular technique. When you do this, you will quickly become aware that the majority

of the sample code you find will be written in C++ not C#. For the most part, translating

the C++ code into its C# equivalent is pretty straightforward once you know how to do

it. The Converting Between C++ and C# Code Examples appendix provides a detailed

discussion of the more commonly required patterns.

WHY WAS THIS BOOK WRITTEN

When I was looking (Spring 2018), there did not seem to be anything intended for the

beginner which brought all of the information together and presented specific novice

friendly advice on how to get started in Windows Media Foundation programming. This

book has been written in an attempt to address that issue1. In other words, this book

contains the information I would like to have had when I was first trying to figure out

how to make anything at all work in WMF using C#.

THE TANTA PROJECT

Originally there was no intention of writing a book. The Tanta2 project originated in the

mid 2000’s as a vehicle to use DirectShow to try out various digital signal processing

techniques. I had just obtained the book Digital Signal Processing 3rd Edition by

1 More accurately, it was my wife who made me write this book. She grew weary of

hearing me rattle on about the lack of information on Windows Media Foundation in C#

and basically said (as wives do) “Well, write one yourself then”. So I did.

2 All my projects have silly code names, in fact I am uncomfortable working on one until it has a
name. The name of this WMF demonstrator project is “Tanta” and there is no particular
significance to the name.

 Introduction

 5

Gonzalez and Woods and wanted to have a go at some of the methods they describe.

What is more, I wanted to do it in C# and also have the code available to C# in a

standard debugger. For that you need to get access to the stream of video data (either

coming off a file or from a web camera) and somehow get it up into the user layer. I kind

of got this working with DirectShow but was never terribly satisfied with it. So I put the

project aside and never wrote it up or made it available on website (

http://wwwOfItselfSo.com).

Well, the years rolled on and I was starting in on another project (named FPath) one

aspect of which requires a computer to make decisions based on video data. I looked at

the old Tanta project to see what might be usable within it. As part of the background

research, I dug around and discovered Microsoft had really moved DirectShow forward

with its successor technology Windows Media Foundation. It seemed possible that a

WMF component called a Transform might be much more useful than what I had before

(spoiler alert: yes it is – Transforms are a very good fit for the requirements).

So, the old DirectShow Tanta project was scrapped and the name re-used for a new

Windows Media Foundation based project with the same goal: Make a demonstration

project that provides a C# application with access to raw video data at the user level.

From the FPath project perspective, the TantaTransformDirect and

TantaCaptureToScreenAndFile sample applications are the only two which are of

interest. However, as part of the learning process, I wanted to thoroughly understand

the usage and capabilities of the Windows Media Foundation technology and thus

wrote the other sample applications (and this book).

 6

Windows Media Foundation:
Getting Started in C#

Chapter 2

OVERVIEW OF WMF
There is no point providing a lengthy discussion of the history of Windows Media

Foundation. You can read Wikipedia as well as anybody and so there is little value in cut

and pasting it in here.

Here is what you, as a C# programmer, really need to

know: With WMF you get a really sweet set of tools that

let you source, sink, manipulate or render (display) media

data.

The tools involved are adaptable and extensible and you can write your own versions to

slot in place of any of the Microsoft provided components if they don’t do what you

need (this is something of an advanced topic though). In addition, you can get access to

the raw feed of media data as it passes through the system and this data will be up in

the user layer (where normal C# programs run) so that a debugger can step you through

the code. It should be noted that this debugging process is only operational on the code

you write – you cannot debug down into the Windows Media Foundation functions.

Those are written in C++ and the source code is not available.

 Overview of WMF

 7

Ultimately Windows Media Foundation provides you with a set of modular components

which you can (if you know how) bolt together to meet just about any media processing

requirement you may have. The tools and techniques in WMF are logically arranged and

fairly consistent in the behavior – although, if you are just starting in on the learning

process, you will probably not agree with that statement. WMF also contains a lot of

technology devoted to playing Protected Media Path content (PMP) which will not be

discussed here because it is something of a niche topic.

WMF AND WINDOWS VERSIONS

Windows Media Foundation was introduced with the Vista operating system and is

intended to be a replacement for DirectShow. Realistically though, there is so much

legacy DirectShow software in existence that both technologies will be available

alongside one another for some time to come.

WMF is not, and never will be, available on Windows XP or earlier windows versions.

Having said that, a lot of the Windows Media Foundation technology is kind of rocky on

Vista and there are numerous reports of some functionality being missing without

various patches and workarounds. As a standard, Windows 7 is a far better “minimum

baseline” platform to work from – although you would be well advised to be on the

latest service pack and fully patched. Most of the Tanta Sample Projects work on

Windows 7 – however, Windows 10 was the development platform. It should be noted

that the Tanta Sample code has never been tested on Windows 8 and its capabilities

there, while assumed to be operational, are unproven.

While Windows Media Foundation is fully operational on Windows 7 there are issues

with the codecs available by default. We have not discussed this issue in detail yet but

some WMF components (such as the Sink Writer) will automatically attempt to load

conversion DLLs in order to operate. The DLLs they load are dependent on the particular

task being performed. This means that on Windows 7 some codec DLLs have to

specifically be made available – they are present, just not “discoverable” by WMF. Most

of the Tanta Sample Projects do this but it was not possible to get some ready in time

for the publication of this book. In such cases, a warning will be issued.

Due to the non-default availability of some codecs on

Windows 7, some WMF components will throw an error

unless special configuration steps are taken. Windows 10

Overview of WMF

8

does not exhibit these problems and is the recommended

development platform.

The version of the .NET Runtime you choose to use is pretty much up to you. The Tanta

Sample Projects use .NET v4.6.1 and this appears to work well. In order to use this

version of .NET you will need to use Visual Studio 2017 or 2015, as earlier releases do

not support that .NET version. The free Visual Studio 2017 Community Edition was used

in the development of all of the sample software for this book.

MF.NET

Ok, so you want to write a Windows Media Foundation application but long ago tired of

writing things in C++. You are now a member of that league of awesomeness known as

the C# programmer. So how can you use WMF which, fundamentally, is C++ software?

Well, C# is equipped with a technology called Interop Services which enables C#

programs to interact with compiled C++ binaries. This is done through a procedure

called marshaling which moves data from the PC heap into the Managed Memory space

of the C# environment and back again. Interop also handles function calls across this

border and will “marshal” the parameters to that function. “But”, you say, “Windows

Media Foundation is COM based – how is that handled”? Well there is also a thing called

COM Interop which works the same and as long as you know “how” to use it you don’t

need to concern yourself with the details of what it is doing.

In order to make a call from C# to a WMF function, you would have to provide a lot of

definitions to COM Interop in order to tell C# how to set up marshaling. You would need

one definition per WMF function and others for all of its polymorphic variants, plus you

would need C# defines for all of the constants and enums and the inevitable multitude

of other things. Wouldn’t it be nice if somebody did all that for you and rolled it up in a

library you could just use?

Yes, indeed, such a thing would be very useful and, in fact, all of that has been done

(and done well) in a library called MF.Net.

The MF.Net library can be found at the following address:

https://sourceforge.net/projects/mfnet/

The MF.Net library was written in C# by two anonymous programmers known by the

handles of nowinskie and snarfle and it is fully open source. You can download the

library DLL binary or, if you wish, download the complete code for the MF.Net library

 Overview of WMF

 9

and compile it up yourself. You can also, of course, look at the contents of it and if you

do you will see things like the following.

[DllImport("mf.dll", ExactSpelling = true), SuppressUnmanagedCodeSecurity]

public static extern HResult MFEnumDeviceSources(

 IMFAttributes pAttributes,

 [MarshalAs(UnmanagedType.LPArray, SizeParamIndex = 2)] out IMFActivate[] pppSourceActivate,

 out int pcSourceActivate

);

Source: MediaFoundation-2010::Externs.cs

This is the code that defines how the MFEnumDeviceSources() static function is

marshalled from C# to C++ and back. It looks complicated (and it kind of is) but you do

not really have to deal with any of that. If you wish to make a MFEnumDeviceSources()

function call to enumerate the audio and video devices on the system, all you need to

write is something like the code below…

// Enumerate the devices.

IMFAttributes attributeContainer = null;

IMFActivate[] deviceArr;

int numDevices = 0;

hr = MFExtern.MFEnumDeviceSources(attributeContainer, out deviceArr, out numDevices);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("failed on call to MFEnumDeviceSources, retVal=" + hr.ToString());

};

Source: TantaCommon::TantaWMFUtils::GetDevicesByCategory

Ultimately, other than the definition of the variables for the parameters and the error

checking, the call is a one-liner. Visual Studio will even tell you required parameter and

return value definitions

in the standard mouse-

over tool tip as is

shown in Figure 2.1.

The point is that you do not need to know about any of this marshaling stuff – all you

need to know is that if you give it the proper parameters in the proper order then the

function will perform the required operation and return the desired information. We

will meet the MFEnumDeviceSources() call in more detail later on in the WMF – First

Contact chapter when we use Windows Media Foundation to enumerate the video

devices are present on the system. You can also step through this code by running the

debugger on the TantaVideoFormats sample application.

The MF.Net library is truly a thing of beauty. It is stable, fast and appears to be quite bug

free. Only one minor issue was found during the writing of this book and one of the

maintainers (snarfle) responded quite quickly to the report.

Figure 2.1: Visual Studio Tool Tips Work on MF.Net Functions

Overview of WMF

10

INSTALLING MF.NET

Installing MF.Net is simple. Just download the library from

https://sourceforge.net/projects/mfnet/ and open it up (it is a zip file) and copy the

MediaFoundation.dll file to wherever you wish. Once it is in place just reference the

DLL in your application like you would any other C# library.

The Tanta Sample Projects (see The Tanta Sample Code chapter) simply place the

MediaFoundation.dll file at the root of the repository and all of the applications

reference it there. You could, if you wished, install the MF.Net library in the Global

Assembly Cache. This process will not be discussed here – a quick search on “install dll in

the GAC” will turn up very detailed information.

The full source code for the MF.Net library is available – so you can inspect and

recompile it as necessary. There are also a number of C# sample projects available for

MF.Net and it is worthwhile looking at that code as well. This book, however, only refers

to the Tanta Sample Projects.

 11

Windows Media Foundation:
Getting Started in C#

Chapter 3

WINDOWS MEDIA FOUNDATION

ARCHITECTURE
Ultimately the purpose of Windows Media Foundation is to transport media information

from one or more objects that originate the data (called Media Sources) to one or more

objects that consume the data (called Media Sinks). WMF provides a set of tools to

manage and manipulate this flow of information and the way you structure these tools

is the architecture of the software you are writing.

Allow me to let you in on the big “secret” regarding the architecture of WMF. Actually

it’s not really so much of a secret as just one of those things that is obvious to

everybody experienced in the technology but which nobody ever bothers to write down

in order to explain it to new users.

In practice, there are two distinct Windows Media

Foundation architectures. It is also possible to create

hybrids between these two architectures and many of the

examples (but not all) you may find on the Internet will be

these hybrids.

Windows Media Foundation Architecture

12

This is an important point. You need to interpret every sample code, help file or blog

post you read in that context otherwise you will become very confused. Let us take a

look at what is going on.

Strictly speaking, there is only one Windows Media Foundation architecture. This is the

Media Source, Media Session, Pipeline, Topology, Media Sink mechanism you may have

read about elsewhere but which has not been discussed yet in this book. This is true,

most things in WMF uses that structure and if you look online trying to get a sense of

what is going on, this is pretty much the only discussion you will see. That is until you

start looking at some of the sample code and find that a lot of it contains none of those

things. No Media Source, no Pipeline or Media Session – just two components called a

Source Reader and a Sink Writer.

In this book we will refer to the structure that uses the

Media Session and Pipeline as the Pipeline Architecture

and the structure that uses the Source Reader and Sink

Writer components as the Reader-Writer Architecture.

The reality is that Media Sessions, Pipelines, Topologies et al are relatively complex

things to set up and so in the interests of making things simpler and providing an easy

win for people who “just want to get stuff done” Microsoft encapsulated the standard

architecture into two objects. These objects are the Source Reader and the Sink Writer.

The job of the Source Reader is to read data from a source (perhaps a file on disk or a

webcam) and job of the Sink Writer is to write it out to a file. So, in theory, if you want

to read data from a source and write it out to a file all you need to do is bolt these two

tools together and the job is done. In such a situation the media data is handed from the

Source Reader to the Sink Writer and you control the stream of data as it is processed.

In other words your code sits in a loop and takes the packet of media data (called a

Media Sample) from the Source Reader and gives it to the Sink Writer until some sort of

stop signal is triggered. Of course you can modify or manipulate the Media Sample on

the way through if you need to do so.

The Source Reader and the Sink Writer are very powerful and relatively simple to

implement technologies and neither of these tools exposes a Media Session or a

Pipeline or any of the standard WMF architecture components in a way that is usable by

the implementer of the software. Actually they do use many of these things – but they

are all internal and you, as the coder, never interact with them at all.

Powerful and simple they are but there is a trade-off (isn’t there always). The Source

Reader and the Sink Writer are not universally applicable to all situations. For example,

 Windows Media Foundation Architecture

 13

there is no way to use a Sink Writer to display media content (unless maybe you wrote a

custom one yourself). The Sink Writer only writes to files. This means that in order to

render media information such as playing video or sound you need to use the full Media

Session and Pipeline Architecture. Similarly if you just want a simple and relatively easy

way to save media data to a file (perhaps as an MP3 or MP4 file) then the Sink Writer is

usually the preferred solution since its configuration is somewhat easier due to the

encapsulation.

The Source Reader is not a Media Source and the Sink

Writer is not a Media Sink. At this point, you probably do

not really understand the significance of this – but for now

just realize it means that there is no way to directly

involve a Source Reader or Sink Writer in a Media Session

and Pipeline.

The above statement is not meant to imply you cannot have an application with a Media

Session and Pipeline and still use a Sink Writer. You can and this is commonly done –

everybody wants to have their cake and eat it too. However, the Sink Writer can never

be part of the Pipeline because the Media Session cannot interact with it. Rather a

special Pipeline component called the Sample Grabber Sink copies the data it receives

from the Pipeline and hands it off to the Sink Writer. In effect the Sample Grabber Sink

pretends (as far as the Sink Writer is concerned) to be a Source Reader. The Sample

Grabber is a true Media Sink and the Media Session can interact with it as required. In

reality, the Sample Grabber just discards the media data once it has been handed off to

the Sink Writer but the Media Session doesn’t know or care about that.

An architecture which uses a combination of a Media Session and a Source Reader or

Sink Writer will be referred to as a Hybrid Architecture in the following discussions.

Although it was said earlier that there are two distinct

Windows Media Foundation architectures (the Pipeline

and the Reader-Writer) the fact that there can be

Hybrids between the two really means there are three

ways of structuring a WMF application. Everything you

read in this book or on the Internet and every bit of source

code will be one of the three architectures.

It will greatly ease your understanding if the first thing you do when you come across an

item of sample code or blog post is figure out what the architecture the author is

Windows Media Foundation Architecture

14

implementing. For example, if you have decided you need to implement a pure Pipeline

Architecture for your application then some sample code which uses a Reader-Writer as

a solution is not likely to be very useful other than as a cut-and-paste solution to a

specific point problems (such as creating a copy of a Media Sample).

It should also be noted that within any specific architecture, there can be more than one

possible sub-architecture. For example, a Reader-Writer application can operate in both

Synchronous and Asynchronous mode. That particular topic will be covered in detail in

the later on in this book, however, for now just realize that that things like this are rarely

stated outright in the comments to whatever sample code you may come across.

The Tanta Sample Projects (see The Tanta Sample Code appendix) contain examples of

all three of architectures and the architecture used is usually indicated in the name. For

example, listed below are three of the code samples. All of these examples do the same

thing - they copy an MP4 file with multiple streams (audio and video) from a source to a

target.

TantaVideoFileCopyViaPipelineMP4Sink - uses a Pipeline Architecture to create

a copy of a specified file.

TantaVideoFileCopyViaReaderWriter - uses a Synchronous Reader-Writer

Architecture to create a copy of a specified file. For an example of an

Asynchronous Reader-Writer see the TantaCaptureToFileViaReaderWriter

application.

TantaVideoFileCopyViaPipelineAndWriter - implements a Hybrid Architecture to

copy a specified file. This application is a mixture of the first two examples.

Instead of an MP4 Sink, a Sample Grabber Sink consumes the Pipeline data

and in the process feeds the data into a Sink Writer.

Other than as a demonstration of WMF technologies, these samples are not very useful

– after all if you actually just wanted to copy a file from one place to another you would

just drag and drop it in Windows Explorer. There are some similar examples for audio

only files (MP3) which demonstrate the same copying process on a file with single media

stream and this is about as simple as the process can get.

Another interesting Tanta Sample Code example (from an architectural point of view) is

the TantaCaptureToScreenAndFile application which implements a Pipeline Architecture

to display the video from a camera on the screen. This application also inserts a special

object called a Transform into the Pipeline which intercepts the media data in the

Pipeline and feeds it into a Sink Writer. Thus the video renderer (which is a Media Sink)

still gets the data to display, but the Sink Writer also gets a copy to write to the disk in

 Windows Media Foundation Architecture

 15

order to provide a permanent record. This is an example of an application implementing

both a full Pipeline and a Hybrid Architecture. It also serves very well to illustrate that

things can get a bit muddy architecturally in WMF and that the three architectures

discussed above are pretty adaptable entities.

In the following sections we will consider each of the three architectures in turn and

also discuss the various aspects of each. Once those discussions are complete, the final

section in this chapter (Which Architecture to Use?) will try to provide a bit of insight

into which architectures are a good fit for a particular situation.

The following sections are quite significant and it is

suggested that you read them carefully. The concepts

described in them will be used extensively in future

Chapters.

THE PIPELINE ARCHITECTURE

Recall that at the start of this chapter it was noted that the ultimate purpose of WMF

was to transport media information from a source to a sink. Let us consider this problem

in more detail and talk about the mechanics of one way in which this data transport

might be performed. We’ll do this by breaking things down into a simple list (some

items of which are obvious) and along the way we will see how the structure of the

Windows Media Foundation Pipeline Architecture provides this.

1. It is easy to see that there can be many different types of Media

Source. For example a Media Source could be a video camera,

microphone or an input file on a disk

2. Similarly, there can be many different types of Media Sink. For

example a Media Sink could be a video display, a speaker or an

output file on a disk.

3. Since the transport of media data is the point of WMF, we will

note here that the data somehow has to move from the Media

Sources to the Media Sinks. The data transmission path is known

as the Pipeline.

4. Since the media data has to be manipulable as it moves through

the Pipeline, and we wish to enable the maximum amount of

user modification, logically the Pipeline will have to consist of

Windows Media Foundation Architecture

16

multiple steps. In other words, in most cases, the data will not go

directly from the Media Source to the Media Sink.

5. Some of the objects which execute the processing steps in the

Pipeline will be supplied by Windows Media Foundation or

Microsoft as part of the platform on which the application is

running. Other objects in the Pipeline will be supplied by third

parties or custom written by the user.

6. We note however, that WMF is designed to provide for multiple

sources and sinks. This implies that that Pipelines in general need

not be just a simple, sequential, linear path. Instead, the Pipeline

must be able to support multiple branching paths. For example,

a file on a disk acting as a Media Source may contain both video

and audio data. The video data may have to end up at a Media

Sink which displays it and the audio data might need to be

moved to a separate Media Sink which renders it as sound. The

name for the structure of the branching paths in a Pipeline is

called the Topology.

7. The objects which will form the steps in a Pipeline are

represented as nodes in a Topology.

8. It is sometimes useful to think of a Topology as a design, (a

blueprint if you wish) and a Pipeline as the built version of that

design. More accurately though, the Topology is built out of

various nodes which will end up in the Pipeline as instantiated

objects when the Topology is converted into a Pipeline.

9. The Topology can be fully specified or partial. In certain

circumstances (playback from a file for example) the Topology

can be sparsely specified and something called the Topology

Loader will automatically fill out the branches of a Topology with

the required nodes based on Transform objects listed in a

designated part of the registry. These Transform nodes may well

have been placed there by third party applications.

10. It is also possible (and common) for an application to explicitly

specify the Transforms it wishes to have in a Topology branch.

11. We also note that a Topology (and hence Pipeline) will never

have to support loops. Data in the Pipeline will never return to

any component that has previously processed it. This helps

simplify things considerably.

 Windows Media Foundation Architecture

 17

12. The Topology may well have multiple branches which join

together on a single object (usually only sinks). For example,

separate Topology branches from a camera and a microphone

might both terminate on the same Media Sink so that both the

sound and video can both be written to the same file.

13. Taking a bit of a digression, we recognize that there are lots of

different basic categories of media such as video, audio, still

photo etc. These types are called the Media Major Types.

14. We also recognize that for any Media Major Type there can be

any number of differing formats. This is called the Media Sub-

Type. For example, the NV12 and YUY2 formats are not the

same thing although they are both subtypes of the video Media

Major Type. Furthermore, even within the NV12 format, video

with a size 640x480 must be treated somewhat differently than

video data sized as 1280x720.

15. Returning back to higher level concepts, we note that Media

Sources might contain multiple identical Media Major Types. For

example a DVD file might have video for the standard edition

and video for the director’s cut. Both are video – but only one

can play at the same time. Similarly, there may be audio content

in various languages and yet another Media Major Type for all

the many and varied subtitles on offer. Each of these “versions”

of a Media Major Type in one Media Source is known as a Media

Stream.

16. Each Media Stream will have one or more Media Sub-Types and

the Media Sub-Types need not be unique between streams. For

example, both the theatrical and directors cuts of a video may

both be offered in the same formats and only a human readable

label known as a “Friendly Name” will differentiate them.

17. Usually only one Media Stream of each Media Major Type is used

in a Topology. For example, it makes no sense to play audio in

two languages simultaneously – although it might be desirable to

play audio in one language and subtitles in another.

18. The data in a Media Stream is going to move through the

Pipeline in small, easily manipulable chunks instead of all at

once. This is why it is called a “Stream”.

19. A Pipeline consists of multiple components each of which

process the stream of data in sequence. Theoretically, there are

Windows Media Foundation Architecture

18

two ways that data can move from component to component in

a situation like that. One method is to have something in overall

control of the Pipeline which picks up data, gives it to a

component and then, when the component is done, the data is

retrieved and given to the next component in the branch. The

alternative is to have the components know about each other

and then, once they are finished processing the data, the

component itself hands the data on to the next one in the

branch. Windows Media Foundation uses the first method and

the object which is in overall control of the movement through

the Pipeline is called the Media Session. DirectShow, WMF’s

predecessor, uses the second method. Both methods have their

advantages, however, the Media Session method does remove

the need for any particular component to know about any other.

The Media Session alone has knowledge of the entire Pipeline

and it takes care of managing the data processing by the various

components.

20. If there are multiple Media Streams in a Media Source, their

content will have to be delivered to their respective Media Sinks

in a synchronized way. For example, the video and audio streams

being played must be synchronized with each other otherwise

the sound will not match what is happening on the screen. This is

not as easy as it sounds since a Pipeline can have branches with

many components. Different Media Streams from the same

source will usually take different routes through the Pipeline.

The data in the streams will also be of quite different sizes. For

example, there will usually be much more video data than audio

data. This means that relying on simple arrival timing to

synchronize the streams will never work.

21. Furthermore, there are clearly situations in which there is an

optimum rate of display. It would not do to have video and

sound play faster than normal speed simply because the PC is

capable of processing it at a faster rate. Alternatively there are

occasions, such as writing to a file, in which the fastest possible

rate would be preferred.

22. Clearly, if there are multiple branches in a Pipeline, some data is

going to have to be delayed until other data is ready to be

 Windows Media Foundation Architecture

 19

rendered. This means that all branches in a Pipeline must be

both throttled and synchronized.

23. A set of related Media Streams that share a synchronized arrival

time is called a Presentation.

24. The Media Session will control all of the Media Streams in a

Presentation and will also manage the data flow through the

Pipeline to ensure that data in all branches arrives at their Media

Sinks at the appropriate time. The Media Session also copes with

issues such as Fast-forwarding, Rewinding, Pausing and Muting

and other common events which interrupt or slow the Media

Streams in the Pipeline.

Thus we see that, although there are quite a number of components in Windows Media

Foundation, each component fulfills a specific purpose in the Pipeline Architecture.

Turning to the internals of the Pipeline we see that there are a few more objects of

which we must be aware.

THE PIPELINE INTERNALS

In order to provide a discussion of the internals of a Pipeline, we will once again resort

to a list of concepts in order to ensure that each topic is only discussed after previous

supporting concepts have been defined. It should be noted that the components

discussed below which are containers for media data are also used in the other two

architectures and those sections will reference this discussion in order to avoid

repetition.

1. Recall from the previous discussion, that the Media Session is

responsible for managing the flow of data through the Pipeline.

Leaving aside the necessary synchronization requirements, the

transport of data through the Pipeline mostly consists of the

Media Session giving some data to a Pipeline component,

retrieving the data when the component is done with it and then

handing it on to the next component. This process repeats until

the data eventually reaches the sink.

2. So what injects the data into the Pipeline in the first place? Well,

this is also the responsibility of the Media Session. When the

Pipeline is built from a Topology (called “resolving” a Topology)

any given branch in the Pipeline is provided with a Media Source,

a Media Sink and one or more intermediate components known

generically as Transforms. The big difference between the three

Windows Media Foundation Architecture

20

is that Media Sources do not have inputs, Media Sinks do not

have outputs and Transforms have at least one input and one

output – but can have more. The Media Session simply treats a

Media Source as a Pipeline component to which it does not have

to provide data and just pulls data from the Media Source and

feeds it into the Pipeline as required.

3. It is easy to see now that a Media Sink is treated by the Media

Session as a Pipeline object to which it only has to give data and

from which there is no need to retrieve data.

4. Since the data must be picked up from the Media Source and

potentially passed in and out of multiple Transforms until it

reaches the Media Sink you might imagine that the data is placed

in a standardized container for easier transport. The name for

this container is called a Media Sample.

5. Inside a Media Sample the data is held in buffers. A Media Buffer

is simply a block of media data. If the media data represents a 2D

surface such as a video frame or still picture, then the Media

Buffer may well be something known as a 2D Buffer. All 2D

Buffers are Media Buffers but not all Media Buffers are

necessarily 2D Buffers.

6. Among other things, a Media Sample can be thought of as an

object that contains an ordered list of zero or more buffers. Why

more than one? Well, if the data is streaming in over a network,

the Media Source might decide to place all of the data that it has

into a single Media Sample. In such an event, the Media Source

might not try to coalesce the data into a single buffer and will

instead just place multiple buffers in the same sample.

7. Frames are the digital representations of individual pictures in a

moving image sequence. Think of the old movie films in which

each cell on the film reel had a picture slightly offset in time from

the previous one. In general, for uncompressed video data, it

would be very unusual to see more than one frame per sample.

8. Yes, the data in a Media Sample can be (and often will be)

compressed. This is done for storage space or transmission

speed reasons. In the event that a compressed stream is present,

a special type of Transform called a Decoder will need to be

inserted into the Topology to convert the compressed data into

uncompressed data. Thus it is quite possible for a node in a

 Windows Media Foundation Architecture

 21

Pipeline to output much more data than it receives. This process

is, of course, reversed if an Encoder Transform is used. There are

lots of Codecs (the generic name for an Encoder/Decoder

transform) available and Microsoft supplies some with the

operating system and third party software supplies others. You

can, of course, write your own.

9. The presence of compressed data in the Media Sample will

depend on the Media Source used. As mentioned previously,

there are some circumstances in which the Topology will

automatically find the correct decoder for you, or you can find

one yourself and add it to the Topology. Alternatively, you can

simply not agree to use that sort of compressed format when

adding the Media Source to the Topology and you may well find

the Media Source can provide an uncompressed version you can

use.

10. The concept of frames has also been extended to audio Media

Streams and, although it is possible to see multiple frames in a

single audio sample, you would not be likely to encounter an

audio frame split across multiple media samples.

11. A Media Buffer is itself a container and the raw media data is

only one of the things it carries. The Media Buffer will have two

other pieces of information associated with it: the current length

and the maximum length. The current length is the amount of

memory currently in use by the buffer and the maximum length

is the total amount of memory which can be used for the buffer.

The two are different because some Transforms will perform in-

place processing as they convert to and from formats and so the

amount of data leaving a Transform may be more than was

originally input. It is also possible to create a new buffer within

the Transform, copy the input data across while modifying it and

to return that new buffer (or buffers) instead.

12. A 2D Buffer, since it represents a video surface, can also return

the stride of the video. The stride is the number of bytes from

one row of pixels in memory to the next row of pixels in

memory. If padding bytes are present, the stride is wider than

the width of the image.

13. If you recall the earlier discussion of the Media Session you will

remember that one of its jobs is to synchronize the flow of data

Windows Media Foundation Architecture

22

through the Pipeline so that each branch presents its data to the

Media Sink at the appropriate time. The Media Sample also

contains information to help with that. This information consists

of a time stamp and a duration. The time stamp is used to

determine the arrival time of the data at the Media Sink and the

duration is the length of time the Media Sink should render it.

14. The presence of the time stamp and duration in the Media

Sample makes it much easier for the Media Session to delay a

sample in a particular Pipeline branch in order to ensure that the

various branches stay synchronized. If you are writing a

Transform (covered in the Working With Transforms chapter)

and are creating new output Media Samples, you will need to

take care to copy over the time stamp and duration values from

the input sample in order to make sure things can stay

synchronized.

15. Media Samples also can contain a multitude of other attributes –

most of which are placed there by the Media Source. These will

not be discussed here, but you can easily look them up if you

need to.

The above is a whirlwind tour of how Windows Media Foundation Pipeline Architecture

operates and the major actors within it. Each component of the above list will be

discussed in detail in The WMF Components chapter and a step-by-step implementation

guide and walk through of an example Pipeline Architecture from the Tanta Sample

Projects is presented in the Implementing the Pipeline Architecture section in the

Practical WMF Architectures chapter.

It should be noted that some of the components used in the Pipeline Architecture are

common to all architectures. For example, objects such as the Media Samples, Media

Buffers and Attributes are also used in the Reader-Writer and Hybrid Architectures. This

makes sense – ultimately all of the architectures have to move data from a source to a

sink and entities such as Media Samples and Media Buffers are nice generic containers

designed specifically for that purpose. They are transferrable as well – a Media Sample

is the same in every architecture. This is how the media data from a Pipeline is

transferred to a Sink Writer in a Hybrid Architecture. The Media Sample (or sometimes

Media Buffer) is just copied and handed over.

 Windows Media Foundation Architecture

 23

THE READER-WRITER ARCHITECTURE

If you have been reading this book linearly (instead of just jumping into the middle) you

should, by now, have a pretty reasonable idea of how things work with the Windows

Media Foundation Pipeline Architecture. So, of course, we are now going to ignore all of

that and discuss the second major type of WMF model known as the Reader-Writer

Architecture. As a recap, the Source Reader and Sink Writer are two of the weird and

wonderful components (there are others – see the Other Non-Pipeline WMF

Components section) provided by Microsoft that encapsulate much of the standard

WMF Pipeline functionality which make it easier for the user to bolt together media

applications.

So, why did Microsoft develop the Source Reader and Sink Writer? As you will see later

on when we begin to look at C# code working with Windows Media Foundation in the

Implementing the Pipeline Architecture section of the Practical WMF Architectures

chapter, the setup of the Topology, Pipeline and Media Sources and Sinks can

sometimes be quite lengthy and involve intricate configuration negotiations among the

nodes as a workable sequence of codecs and media format conversion Transforms are

resolved.

The team at Microsoft developing WMF recognized the difficulty of the Topology

resolution issue. They also realized that probably one of the most common functions

required on a Windows system is reading and writing media data to and from a file. In

order to address this need, they built components which encapsulate that functionality

and make life easier (in some specific cases). These components are called the Source

Reader and Sink Writer and they are intended to provide faster more automated

alternatives to the full Media Source, Media Sink, Media Session and Pipeline

infrastructure.

Once again, we will make a nice list to discuss the Source Reader and Sink Writer.

1. If all you want to do is read a media file and get access to the raw

data for your own purposes you probably do not want to have to

set up the full Media Session and Pipeline. In this case, the

Source Reader is the way to go. In order to use it all you need to

do is point it at a file, choose the stream you wish to access, give

it an output Media Sub-Type and you will get a flow of Media

Samples containing the raw data in Media Buffers which you can

use as you see fit.

Windows Media Foundation Architecture

24

2. The Source Reader is relatively simple to use and effectively all

you need to do in order to use it is to give it a filename, choose a

stream from the available Media Major Types and provide it with

an output Media Sub-Type. The Source Reader it will do the rest

of the configuration for you.

3. The Sink Writer performs a similar function for writing to files. If

you have a stream of media data coming in from somewhere

(perhaps over TCP/IP) you can just give the Sink Writer a file

name, an input Media Type, an output Media Type and you will

get all sorts of Media Sink type functionality wrapped up in one

little nice package. After that, when the data arrives, all you need

to do is stuff it into your own Media Samples hand it off to the

Sink Writer for storage.

4. If the Source Reader is supplying the data, you will get the Media

Samples and Media Buffers already created which saves you the

need of creating your own.

5. People, being people, are also quick to note that devices can be

treated as a kind of file and so why can’t the Source Reader be

used to read a device such as a video camera? Well, it turns out

it can. The Source Reader, unlike the Sink Writer, can also access

a physical device and present the data it emits to your code.

6. The Sink Writer can only deal with files not devices, so don’t try

to use it to display video or play sound – for that you need a

Media Sink (and a Pipeline).

7. The Source Reader has its own internal Media Source and can

contain zero or more conversion Transforms. If you specify an

output Media Type different to that of the native Media Type on

the stream you selected from the file or device, then the Source

Reader is going to have to do some conversion for you.

8. The Sink Writer also has its own internal Media Sink and can also

contain zero or more conversion transforms. If you specified an

output Media Type different to that of the Input Media Type the

Sink Writer is going to try to convert the data for you before it

writes it out.

9. Neither the Source Reader nor the Sink Writer provide an easy

way to specify a specific Transform to use. They are largely

automated in this respect. For example, if necessary, the Sink

Writer will dig around on the system (using the registry) and will

 Windows Media Foundation Architecture

 25

find a Transform which can convert the Media Samples of the

input Media Type you specified into data that can be written in

the output Media Type you specified. If it cannot find a suitable

converter it will simply throw an error. This can sometimes cause

problems as the Transform chosen may well vary from system to

system depending on what is available. If you need more control

than that, you should use a Pipeline or Hybrid Architecture and

fully specify things yourself. If you make sure to specify identical

input and output Media Types and take care to only give it data

in that format, then the Sink Writer will not try to find a

Transform to convert things.

10. As was noted at the beginning of this section, the Source Reader

is not a Media Source and the Sink Writer is not a Media Sink.

They each implement the appropriate functionality internally but

neither exposes the Media Sink or Media Source functionality in

a way the user can easily use.

11. Since they are neither Media Sources or Media Sinks, the Source

Reader and Sink Writer cannot be directly included in a Pipeline.

12. Source Readers and Sink Writers can be used alongside a

Pipeline. For example, it is possible to intercept the Media

Samples as they pass through the Pipeline and hand them off to

a Sink Writer. This is known (in this book) as a Hybrid

Architecture and is discussed in a following section (see The

Hybrid Pipeline-Writer Architecture section).

13. It is possible to have multiple Source Readers feeding the same

Sink Writer. An example of such would be incoming feeds from a

video and audio device being recorded to the same output file.

14. Neither the Source Reader nor the Sink Writer require each

other. They are completely independent. However the two are

commonly used together in a pattern in which the user writes

what is effectively a loop which reads Media Samples from the

Source Reader and gives them to the Sink Writer.

15. It is entirely possible to use a Source Reader to send media data

to some other application (perhaps over TCP/IP). In such a case

the outbound data will probably have to be stripped out of the

Media Samples prior to transmission.

16. Similarly, it is possible for the Sink Writer to write data received

from an external source. As you might imagine that would

Windows Media Foundation Architecture

26

probably require the raw media data to be placed into Media

Buffers and Media Samples before the Sink Writer could accept

it.

17. It is possible to create a Media Source and convert it into a

Source Reader and similarly, it is possible to create a Media Sink

and convert it into a Sink Writer. The use of the Media Source or

Media Sink in a Pipeline after you have performed such a

conversion is not documented and, while it may, be possible it is

very likely to be problematic and is not recommended. The

conversion of a Media Sink not involved in a Pipeline into a Sink

Writer and then using the result as a Sink Writer is possible and

is sometimes done. However there is little requirement to do this

since the Sink Writer is generally easier to create and configure

directly.

18. The reverse may or may not be possible. You may be able to dig

a Media Source or Media Sink out of a Source Reader or Sink

Writer but the subsequent use of those entities in a Pipeline is

not documented. It is probably best to stick with the more well-

known of the creation mechanisms unless you are super

experienced or just like to cause trouble for yourself.

19. There are two fundamental types of pattern when using a Source

Reader: Synchronous and Asynchronous.

THE READER-WRITER SYNCHRONOUS MODEL

20. When the Source Reader is used in Synchronous Mode, the user

(once the Source Reader is configured) simply repeatedly calls

ReadSample() on the Source Reader until there are no more

Media Samples remaining. Once you have the Media Sample you

can do what you want with it – including handing it off to a Sink

Writer if you wish. The TantaAudioFileCopyViaReaderWriter

example code provides a simple example of a Source Reader and

Sink Writer used in Synchronous Mode.

THE READER-WRITER ASYNCHRONOUS MODEL

21. If you give the Source Reader a Callback Object, you are using the

Source Reader in Asynchronous mode. In that case all you need

to do is read the first sample (again using a ReadSample() call)

 Windows Media Foundation Architecture

 27

and a function in the Callback Object will receive the Media

Sample. It is up to the Callback Function to request the next

Media Sample before it exits. The Media Sample requested in

the Callback Function will again be received by the same Callback

Function. The Callback Function must also process the sample

(including handing it off to a Sink Writer if you wish) as

necessary. This looping process continues inside the Callback

Function until no more Media Samples remain. The nice thing

about using the Source Reader in Asynchronous mode is that,

once started, the Callback Function operates in its own thread

and the main part of the code is free to do other things such as

manage the user interface. The

TantaCaptureToFileViaReaderWriter sample file provides an

example of a Source Reader and Sink Writer used in

Asynchronous mode.

THE HYBRID PIPELINE-WRITER ARCHITECTURE

As mentioned at the start of this chapter, sometimes, you just want the best of both

worlds. In other worlds, you want to have the ease of configuration of a component

such as the Sink Writer but you also wish to have the fine grained functionality and

control offered by the Pipeline Architecture. In such a case you will probably want to

implement a Hybrid Architecture in which much of the processing is performed by a

Media Session and Pipeline and then right at the end, once the data is suitably

processed, the data is handed off to a Sink Writer.

This presents something of a problem since the Sink Writer cannot be included directly

in a Pipeline. So, how is it done? Well the trick is to use a Pipeline component which,

when it receives the Media Samples, creates a copy and then gives that copy to the Sink

Writer. The original Media Sample is processed as normal and the Media Session, which

is running the whole show, is none the wiser.

There are two fundamental ways of performing this “extracting the data from the

Pipeline on the way through" sort of functionality. The first is to use something called a

Sample Grabber Sink. The second is to write a custom Transform which, in effect, does

the same thing as the Sample Grabber Sink, but which is a Transform not a Media Sink.

The Sample Grabber Sink is a Microsoft supplied component and is part of WMF. It is

also, as its name suggests, an actual Media Sink and hence can be used in a Pipeline like

Windows Media Foundation Architecture

28

any other sink. Every system with a standard configuration will have one. The Sample

Grabber Sink simply discards any data sent to it and lets the Media Session know that it

can accept more. This keeps the Media Session nice and happy and the data travels

through the Pipeline. The Sample Grabber Sink can also be given a user written Callback

Object and a function in this object will be called before the data is discarded. The

parameters to the Callback Function contain the Media Buffer (but not the Media

Sample) of the data being processed. It is up to the writer of the Callback Function to

process this data as they wish. In many cases this consists of wrapping the Media Buffer

in a Media Sample and handing it off to a Sink Writer. In this manner, a copy of the

media data can be presented to entities outside of the Pipeline. The

TantaAudioFileCopyViaPipelineAndWriter Sample Project provides a simple example of

this functionality.

The problem with the Sample Grabber Sink is that it discards the data it receives. What

if it was desirable to have a sink in the Pipeline which actually performed a function such

as rendering the data (perhaps displaying a video feed on the screen). How then might a

copy of the data also be recorded in a file? In such a case a Tee Transform could be

inserted into the Pipeline which creates two branches. One branch would feed the

renderer sink and the other would feed the Sample Grabber Sink. The Sample Grabber

Sink would, of course, hand off its data to a Sink Writer as in the previous example. This

would work and the Media Session can easily handle such a branched topology. The

downside is that branched topologies are a bit tricky to set up.

An alternative method would be to write a Transform located in between the Media

Source and the Media Sink which renders the video data to the screen. The Transform

could provide the sample grabbing functionality and feed a copy of the data to a suitably

configured Sink Writer. This is the approach taken by the TantaCaptureToScreenAndFile

sample. Both methods, (the Tee and the Sample Grabber Transform) have their

advantages. As with most things WMF – there are usually multiple ways to implement

any particular requirement.

OTHER NON-PIPELINE WMF COMPONENTS

In your travels you may find that you run across a few other WMF Components that do

not use the Media Session and Pipeline Architecture. Two of these are the Transcode

API and the Output Protection manager. There are also various API’s dedicated to

supporting of DirectX3D. These API’s are “kinda-sorta” Pipeline related in that they can

be used within a Media Session and Pipeline Architecture. However they can also be

used with a Source Reader as well. The DirectX3D API’s will not be discussed further

 Windows Media Foundation Architecture

 29

here and the others will be given only a brief coverage to note down the main points. In

truth, if you are just learning WMF, you will probably not need to interact with any of

these technologies for a while.

THE TRANSCODE API

Remember how the Reader-Writer Architecture was designed to make the read and

write of media data easier in certain circumstances? Well, the Transcode API was

designed for the process of conversion of a digital media file from one format to

another. This particular technology is does not seem to be very commonly used – the

ability to add Transforms into the Pipeline provides a lot more functionality for only

slightly more work. However, the Transcode API is there to use if you need it – it is not

going to be discussed further in this book.

THE OUTPUT PROTECTION MANAGER

The Output Protection Manager (OPM) is a kind of copy-protection mechanism that

enables an application to protect media content as it travels over from a physical source

device to a sink device. Basically, it is an attempt to address the problem that no matter

how encrypted or copy protected media data might be, it must inevitably be

unencrypted or un-copy protected somewhere along the transport path in order for a

renderer to display it. OPM technologies are used extensively inside the Protected

Media Path (PMP) functionality which is a Pipeline based Digital Rights Management

(DRM) type copy-protection mechanism. It is also available outside the Pipeline for

applications that wish to use it. The OPM is quite an advanced topic and so will not be

discussed further in this book.

THE IMFCAPTUREENGINE AND IMFSENSORDEVICE

These appear to be technologies designed to assist with the capture of video, audio and

sensor data. They do not appear to be in common use and little information (other than

the help files) is available online regarding them. They will not be discussed in this book.

WHICH ARCHITECTURE TO USE?

It is hard to provide a definitive prescription which can be used to select a particular

architecture for and application - most outcomes can be achieved in any one of several

ways. However, some generalities can be provided. If you need to transform or

manipulate the media data in between acquiring it and dispensing with it then you will

probably need to use the Pipeline or Hybrid Architectures. These would give you the

Windows Media Foundation Architecture

30

ability to inject Transforms into the Pipeline and modify the data as necessary. If you are

creating your own media data, for example generating an animation, then the Sink

Writer could be used to write the information to the disk since its configuration is

generally much simpler. In the event that your media streams start on a physical device

and end on a physical device without the need for any conversion or transformation,

then any of the architectures would be suitable – although probably the Reader-Writer

Architecture would be the simplest.

 31

Windows Media Foundation:
Getting Started in C#

Chapter 4

MF.NET PROGRAMMING FUNDAMENTALS
This chapter is intended to provide you with an overview of the basic building-block

tools and concepts you will run into when you begin to program in Windows Media

Foundation. As such it will be an assortment of “useful” things you will be glad to have

run across before you start programming in Windows Media Foundation.

Having said that, in the discussion below, you will probably come across WMF entities

which have only been briefly mentioned in in the previous chapters. Don’t worry too

much about this – everything will be explained in much more detail in later on.

However, it will be very useful for you to have been exposed to some of the following

ideas by the time that happens and your ability to absorb the new information then will

be greatly improved. So, let’s get an understanding of some fundamental concepts

before we move on.

YOU MUST USE AN [MTATHREAD] CODE DECORATION

Internally the components in Windows Media Foundation use a number of threads.

These components are also COM objects and there are two basic types of COM multi-

threading model. These are “Single-Threaded Apartment” and “Multi-Threaded

MF.Net Programming Fundamentals

32

Apartment”. In reality, you do not need to know any of the gory details of this

Apartment Model thing as long as you are aware that…

1. You usually have to enable the Multi-Threaded Apartment model

or your WMF code will not work in many (if not most) cases.

2. The fact that you have enabled the Multi-Threaded Apartment

model will cause problems with other COM components that use

forms. The commonly used (Windows supplied)

OpenFileDialog file picker component is an example of this.

ENABLING THE MULTI-THREADED APARTMENT MODEL

Most normal C# form based programs are launched from the Main() function in the

Program.cs file. Enabling the COM Multi-Threaded Apartment model is as simple as

placing the text [MTAThread] immediately above your Main() function in the

Program.cs file of your C# application. The sample code section below shows an

example of this.

/// <summary>

/// The main entry point for the application.

/// </summary>

///

/// SUPER IMPORTANT NOTE: You MUST use [MTAThread] here. If you use [STAThread]

/// you may get errors

[MTAThread]

//[STAThread]

static void Main()

{

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 Application.Run(new frmMain());

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::Program.cs::Main()

The [MTAThread] tag is called a “Code Decoration” and it is a signal which tells the

compiler to change its behavior. The default model is [STAThread] and it is not at all

obvious (or well documented) that you have to change it to [MTAThread] in order for

Windows Media Foundation to work well. It should be noted that in many cases your

WMF C# application will work just fine with the [STAThread] model – however it is

possible that odd runtime errors could result and you will not get a sensible error

message explaining what happened.

IMPORTANT: Always use an [MTAThread] tag just above

your Main() function when using Windows Media

Foundation. If you do not do this then you could

introduce problems.

 MF.Net Programming Fundamentals

 33

COPING WITH [MTATHREAD] PROBLEMS

Ok, so you have to use the Multi-Threaded Apartment model in most MF.Net

applications. The downside is that a lot of the COM based components Windows

supplies are not thread safe and only the [STAThread] model guarantees thread safety

for them. Some examples of this are the Open File Dialog, the Directory Picker, the Web

Browser control and things like Clipboard Drag and Drop. If you use these tools in an

application based on the [MTAThread] model without taking special precautions then

you may experience odd lockup behavior. Some components such as the

OpenFileDialog will simply throw an error if you try to use them in a [MTAThread]

based application.

So, does this mean you cannot use the OpenFileDialog component in your MF.Net

application? Of course you can use it, but you just have to take some special precautions

to get it to work. The code section below from the TantaFilePlaybackAdvanced Sample

Project demonstrates this process.

/// +=

/// <summary>

/// Handles a press on the buttonPickFile button

/// </summary>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

private void buttonPickFile_Click(object sender, EventArgs e)

{

 OpenFileDialog openFileDialog1 = new OpenFileDialog();

 // we only permit this action if we are not playing

 if (ctlTantaEVRFilePlayer1.PlayerState != TantaEVRPlayerStateEnum.Ready)

 {

 OISMessageBox("A video is currently playing");

 return;

 }

 openFileDialog1.Filter = "Windows Media|*.wmv;*.wma;*.asf;*.mp4|Wave|*.wav|MP3|*.mp3|All

files|*.*";

 // File dialog windows must be on STA threads. ByteStream handlers are happier if

 // they are opened on MTA. So, the application stays MTA and we call OpenFileDialog

 // on its own thread.

 TantaOpenFileDialogInvoker invokerObj = new TantaOpenFileDialogInvoker(openFileDialog1);

 // Show the File Open dialog.

 if (invokerObj.Invoke() == DialogResult.OK)

 {

 // pick the file

 textBoxVideoFileNameAndPath.Text = openFileDialog1.FileName;

 ctlTantaEVRFilePlayer1.VideoFileAndPathToPlay = openFileDialog1.FileName;

 }

}

Source: TantaFilePlaybackAdvanced::frmMain::buttonPickFile_Click

The above code simply uses the TantaOpenFileDialogInvoker class in the TantaCommon

project to put the OpenFileDialog temporarily back on a thread which uses an

[STAThread] model. The actual code for the TantaOpenFileDialogInvoker class,

while not overly complex, is too much of a digression for us to follow at this point. You

can easily inspect that code in the Tanta Sample Projects to find out how it works.

MF.Net Programming Fundamentals

34

INITIALIZING WINDOWS MEDIA FOUNDATION

The Windows Media Foundation substrate must be initialized before any of the WMF

components will work. This is done with a call to the static MFStartup() function and is

usually performed in the constructor of the applications main form. You would probably

have figured this out within the first ten seconds of reviewing any sample code.

However, for completeness, let’s note down the process here.

// we always have to initialize MF. The 0x00020070 here is the WMF version

// number used by the MF.Net samples. Not entirely sure if it is appropriate

hr = MFExtern.MFStartup(0x00020070, MFStartup.Full);

if (hr != 0)

{

 LogMessage("Constructor: call to MFExtern.MFStartup returned " + hr.ToString());

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::frmMain

Not too amazing, but at least now you can’t say you weren’t told.

SHUTTING DOWN WINDOWS MEDIA FOUNDATION

In a similar way, Windows Media Foundation should be shut down when the application

closes or no longer needs WMF. This is typically done in the FormClosing() handler of

the applications main form. The procedure for closing down WMF is simple – just a

straight forward call to the MFShutdown() static function.

private void frmMain_FormClosing(object sender, FormClosingEventArgs e)

{

 LogMessage("frmMain_FormClosing");

 try

 {

 // do everything to close all media devices

 CloseAllMediaDevices();

 // Shut down MF

 MFExtern.MFShutdown();

 }

 catch

 {

 }

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::frmMain_FormClosing

Shutting down WMF may be simple - but there are other considerations. Note the call to

CloseAllMediaDevices() in the above code section prior to the call to the

MFShutdown() function. The CloseAllMediaDevices user written function releases the

Windows Media Foundation components which are stored as class variables. This is not

just a memory recovery process – some of the WMF components (such as file sinks)

need to be formally shutdown in order to properly finish off writing their output data.

The Releasing COM Objects section further on in this chapter contains a more detailed

discussion on the releasing and shut down process.

 MF.Net Programming Fundamentals

 35

MOST WMF OBJECTS ARE INTERFACES

Most non-trivial WMF objects are dealt with as interfaces not as the objects themselves.

They actually are objects, of course, but you rarely know or care what type they are.

What you will be interested in are the interfaces that object offers. For example, you

will never deal with a MediaSession object directly. You will, though, regularly deal with

some object, of some unknown type, which implements the IMFSession interface.

Do not expect to deal with objects of a certain type. You

will almost always deal with some opaque entity of

unknown type which implements a certain interface.

Usually that object will also implement multiple other

interfaces.

Windows Media Foundation interfaces are exactly the same thing in concept as C#

interfaces and in MF.Net they are C# interfaces.

As a C# programmer you are much more familiar with the concept of interfaces than the

C++ coders for whom the WMF classes were originally intended. This makes it much

easier for the C# community to understand the idea. For example, in C# you would have

no problem considering an object to be both a Person and IComparable. Similarly, an

object can simultaneously be an Organization and IComparable. This does not mean a

Person is an Organization. You could try and compare the two – but in most

implementations the result would always be False.

In the above example, the IComparable interface is just a defined set of methods which

form a contract. The actual mechanism of the comparison is left up to the implementer

of the interface. Thus a Person object might compare names, gender, birthdates and

national id number in order to assess equivalence. An Organization object would have

an entirely different set of comparison criteria.

The point of interfaces is that the caller knows what to expect. It can take an object and,

if that object implements a defined interface, then the caller will be able to interact with

that object according to the specification of that interface.

You will constantly run across interfaces in Windows Media Foundation. For example,

the Enhanced Video Renderer control which displays video is essentially just a collection

of interfaces. In fact the EVR implements over 16 of them and each is dedicated to a

different function. You never really interact with the Enhanced Video Renderer itself,

instead you treat it, on different occasions, as an object of type

MF.Net Programming Fundamentals

36

IMFVideoDisplayControl, IMFVideoPresenter, IMFVideoRenderer (and so on) and

interact with it via the properties those interfaces expose.

Similarly the Media Session object is intrinsic to most of the Pipeline Architecture WMF

programs you will write. Yet you will never interact directly with an object of type

MediaSession. All you will ever do is work with an object which exposes the

IMFMediaSession interface. In fact, you will never actually create this object – there is

no concept of a new MediaSession() call in WMF. You get the Media Session object,

with a call to a static function like MFExtern.MFCreateMediaSession(), which builds it

for you and passes it back as an out variable. You have no idea what the type of the

object you receive really is, or whatever else it might be. All you know is that it is some

blob of code which implements the IMFMediaSession interface.

IUNKNOWN

Each interface in Windows Media Foundation is required to inherit and implement the

IUnknown interface. The relationship between IUknown and WMF interfaces is exactly

analogous to the relationship between all C# objects and the base class object.

As with the object class, the IUnknown interface does not do all that much. The one

thing it does do (that is relevant to the discussions here) is that it implements a

QueryInterface function. This function will be discussed in a subsequent section.

The other thing the IUnknown interface does is that it allows a programmer to refer to

some unknown WMF object as an IUnknown. This is quite useful when one wishes to be

generic about things. In the example below, derived from the TantaVideoFormats sample

code, it is possible to see a Callback Object being set in an Attribute.

// Set our Callback Object as an IUnknown pointer in the attribute container.

hr = attributeContainer.SetUnknown(

 MFAttributesClsid.MF_SOURCE_READER_ASYNC_CALLBACK,

 asyncCallBackHandlerIn);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("failed on call to MFCreateAttributes, retVal=" + hr.ToString());

}

Source: TantaCommon::TantaWMFUtils::CreateAsyncSourceReader

The asyncCallBackHandlerIn value passed in the above example is really an

IMFSourceReaderCallback and pretty much everything in the code knows this – so

why does it let the Attribute Container treat it as an IUnknown? Well, the reason is that

Attributes just don’t want to deal with that level of complexity. In exactly the same way

that you might define a function to accept an object of type object and expect the code

to figure it out later, WMF uses IUnknown interfaces to pass interfaces around. The

implicit understanding is that whatever eventually reads this attribute will look at the

 MF.Net Programming Fundamentals

 37

MF_SOURCE_READER_ASYNC_CALLBACK GUID, will know what it is and will be able to deal

with it appropriately.

The really big takeaway from the above discussion is that

when you see various help files and code samples

constantly referring to IUnknown just realize they are

really referring to the WMF interface equivalent of the

object class.

GETTING AN INTERFACE FROM AN INTERFACE

Given that most Windows Media Foundation objects you interact with will actually offer

multiple interfaces, the implementers of WMF have provided ways to ask an object for a

specific interface.

Note that, in general, one cannot always cast an object from one interface type to

another. Sometimes the original object implements the new interface directly and

sometimes the original object simply contains an object of the new interface type. In

other cases, the object does not actually implement a specific interface but can actually

build and return an object that does. In all but the first case, a cast will simply fail.

The way you get an interface from an existing interface is either via a call to

MFExtern.MFGetService or a call to QueryInterface on the interface itself.

The MFExtern.MFGetService call is the more commonly used of the two. This function

is simply a helper function that eventually calls IMFGetService::GetService method.

And just what is the IMFGetService interface you ask? Well, the IMFGetService

interface is yet another interface implemented by most WMF entities and it allows you

to query that object for other interfaces. The IMFGetService::GetService call queries

the object for an IMFGetService interface and if that interface is present, calls

GetService on the object and returns the results.

In any event, the MFExtern.MFGetService, call delivers an object of the requested

type from another object which knows about it or can create it. Its usage is pretty

simple. Below is an example of the IMFVideoDisplayControl interface of the

Enhanced Video Renderer object being obtained from a Media Session object.

// we need to get the active IMFVideoDisplayControl. The EVR presenter implements this

// interface and it controls how the Enhanced Video Renderer (EVR) displays video.

hr = MFExtern.MFGetService(

 mediaSession,

 MFServices.MR_VIDEO_RENDER_SERVICE,

 typeof(IMFVideoDisplayControl).GUID,

 out evrVideoService

MF.Net Programming Fundamentals

38

);

if (hr != HResult.S_OK)

{

 throw new Exception("call to MFExtern.MFGetService failed. ");

}

if (evrVideoService == null)

{

 throw new Exception("call to MFExtern.MFGetServicee failed");

}

// set the video display now for later use

IMFVideoDisplayControl evrVideoDisplay = evrVideoService as IMFVideoDisplayControl;

Source: TantaCommon::ctlTantaEVRFilePlayer::MediaSessionTopologyNowReady

As was mentioned previously in the IUnknown section, all interfaces in Windows Media

Foundation ultimately derive from the IUnknown interface. One of the functions that the

IUnknown interface requires the implementer to support is QueryInterface. The

QueryInterface call is designed to accept a GUID and return an object which supports

this interface. There are a number of strict rules regarding the behavior of the

QueryInterface function. These rules are quite intricate and not really too relevant,

given the discussion below and so they will not be discussed there.

However, some implementations of QueryInterface in WMF components were known

to be problematic – particularly in early versions. Probably for this reason they are not

used all that much. Certainly the MF.Net library source code contains a comment

indicating that they have been troublesome.

The QueryInterface call takes a service identifier GUID and an out pointer to the

returning object. It is important to be aware, as discussed earlier, that it can return

another object that implements the interface instead of returning a pointer to the

original object that is queried.

THE DIFFERENCE BETWEEN MFGETSERVICE AND QUERYINTERFACE

Ultimately both of these calls, if they succeed, return an object which implements the

specified interface. They are generally equivalent, however, there is one technical

difference. When QueryInterface returns an interface one of the strict conditions

mentioned above is that it should be possible to query the returned interface and

retrieve the original interface. There is no such requirement on the GetService

method. It can, and will, return an object that knows nothing about the original creator.

Most of the time you never need to know who created the object (you already know

this) and the inability to get the original interface back again is not critical.

 MF.Net Programming Fundamentals

 39

WMF OBJECT CREATION IS INDIRECT

Windows Media Foundation objects are almost never created directly. For example, you

will rarely ever write a line of code like WMFObject foo = new WMFObject(). This is a

consequence of dealing primarily with objects in the COM layer and is also associated

with the fact that you are dealing largely with interfaces. This indirect creation process

makes sense if you think about it. WMF will use COM and the registry to find and create

many, if not most, of the WMF objects you will use. You will not know at compile time

the type of this object – just the interfaces it supports. So, if you do not know the

fundamental type of object a Media Session really is, then how can you create one

directly? The simple answer is that you cannot – something else has to create it for you

and all you will get back is an object of unknown type which you definitely know

implements the IMFMediaSession interface.

Of course you have to get the media object which does the creation for you from

somewhere else and that object in turn has to be generated from something else and so

on. There are a variety of different creation methods, but if you walk a particular chain

back to the source in most cases you will find that, ultimately, the ancestor WMF object

was created by calling some static procedure in the MFExtern class which delivers it. Of

course, you do not know any of the details of how the MFExtern call managed to do

what it did.

Thus, in summary, an important thing to remember when dealing with Windows Media

Foundation is that…

WMF objects are almost never directly created. Usually

you call something else which builds it for you. In other

words, you will never write new MediaSession() to

create a session. It is always the equivalent of “hey existing

object, make something with an IMFSession interface for

me and hand it over” or “hey static function, work some

magic and make me an object with this interface”.

If you keep the above idea in mind as you read the source code examples then things

will make a lot more sense.

MF.Net Programming Fundamentals

40

RELEASING COM OBJECTS

As discussed in the preceding WMF Object Creation is Indirect section, the process of

creating a Windows Media Foundation object is rarely straightforward. For example,

one of the ways of creating a Media Sink is to use something called an Activator. An

Activator is an object which is usually obtained via a call to a static WMF function and

which can automate the task of creating a Media Sink. Let’s not worry too much about

the details at this point and focus on the fact that in order to create a Media Sink we

first had to obtain a temporary object which is no longer needed once the desired

object exists. The point is, both the temporary object and the object of interest are COM

entities and are not created within the memory managed by the .NET Common

Language Runtime (CLR). The memory used to create the object is located on the

unmanaged system heap and will need to be freed up.

The C# garbage collection mechanism cannot properly free

up the memory of most of the objects your application

obtains from WMF. It is up to you, the programmer to

release these objects when you are done with them –

otherwise you will get a memory leak.

The process of releasing a COM object closes the object down correctly, if necessary,

and frees up the memory it is using. Of course, the two objects discussed above (the

Activator and the Media Sink) are probably going to be released at different times. This

makes sense if you think about it for a bit. The Activator is temporary and is only used

briefly so it is reasonable to free it up as soon as possible. The Media Sink might be

needed for some time and so it might only be released when the application finishes

operations or closes.

Releasing an object is simple. You simply call the Marshal.ReleaseComObject COM

function and pass the object in as a parameter. The code section below shows how an

Activator might be released after it is given to a Topology Node (which will eventually

create the EVR Renderer).

/// +=

/// <summary>

/// Create a topology node for EVR Video Renderer sink. The caller must

/// release the returned node.

/// </summary>

/// <param name="videoWindowHandle">the handle to the window on which

/// video streams will display</param>

/// <returns>the ouput stream node</returns>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

public static IMFTopologyNode CreateEVRRendererOutputNodeForStream(IntPtr videoWindowHandle)

{

 HResult hr;

 MF.Net Programming Fundamentals

 41

 IMFTopologyNode outputNode = null;

 IMFActivate pRendererActivate = null;

 try

 {

 // Create a downstream node.

 hr = MFExtern.MFCreateTopologyNode(MFTopologyType.OutputNode, out outputNode);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MFCreateTopologyNode failed. Err=" + hr.ToString());

 }

 if (outputNode == null)

 {

 throw new Exception("call to MFCreateTopologyNode failed. outputNode == null");

 }

 // Create an activation object for the enhanced video renderer (EVR) media sink.

 hr = MFExtern.MFCreateVideoRendererActivate(videoWindowHandle, out pRendererActivate);

 if (hr != HResult.S_OK)

 {

 throw new Exception("MFCreateVideoRendererActivate failed. Err=" + hr.ToString());

 }

 if (pRendererActivate == null)

 {

 throw new Exception("failed. pRendererActivate == null");

 }

 // Set the IActivate object on the output node. Note that not all node types use

 // this object. On transform nodes this is IMFTransform or IMFActivate interface

 // and on output nodes it is a IMFStreamSink or IMFActivate interface. Not used

 // on source or tee nodes.

 hr = outputNode.SetObject(pRendererActivate);

 // Return the IMFTopologyNode pointer to the caller.

 return outputNode;

 }

 catch

 {

 // If we failed, release the outputNode

 if (outputNode != null)

 {

 Marshal.ReleaseComObject(outputNode);

 }

 throw;

 }

 finally

 {

 // Clean up.

 if (pRendererActivate != null)

 {

 Marshal.ReleaseComObject(pRendererActivate);

 }

 }

}

Source: TantaCommon::TantaWMFUtils::CreateEVRRendererOutputNodeForStream

In the code section above, particularly note that an IMFTopologyNode is also created.

The caller is expected to release the Topology Node object at the appropriate time. This

sort of “expected to release” behavior is ubiquitous in Windows Media Foundation and

you must pay attention to it in your code or your program will consume ever increasing

amounts of memory until it crashes. It is fairly safe to say that every object given to you

(large or small) will need to be released with a call to Marshal.ReleaseComObject().

The entity obtaining the WMF object is always responsible for cleaning it up.

Both a catch and finally block are used to ensure that the objects which are created,

get properly released. The catch block is used to dispose of the Topology Node if there

is an error and the finally block is used to properly release the Activator once it is

passed into the Topology Node.

MF.Net Programming Fundamentals

42

Also note how the Activator object is released once it has been given to the Topology

Node. There is no indication that the outputNode.SetObject() call actually used or

was finished with the Activator. In fact, it did not use the Activator and definitely was

not finished with it. The Activator needs to be present in the Topology Node until the

Topology is resolved (converted into a Pipeline) and that does not happen for quite a

few lines of code beyond that point. So, how can the Activator be released at the

bottom of the CreateEVRRendererOutputNodeForStream function if the Topology

Node still needs it? Well, the outputNode.SetObject() call creates its own reference

to the Activator object. Calling Marshal.ReleaseComObject() in the finally block just

decrements the reference count and the Activator will not be formally released until the

Topology Node itself lets it go with a call to Marshal.ReleaseComObject(). In general,

most WMF objects work like this and this mechanism permits you to dispose of

temporary objects immediately rather than having to implement some complex release

procedure later.

You will occasionally see a call to SafeRelease() instead of ReleaseComObject().

SafeRelease is just a wrapper function which is part of MF.Net and is replicated in

various classes within the Tanta Sample Projects. You can easily inspect this code and so

it will not be reproduced here. However, it does perform quite a few checks before

releasing - such as checking that the object to be released is actually a COM object. This

is pretty much all of debatable utility since your application should really know the type

of object it is releasing.

RELEASING CLASS VARIABLES

Obviously you can structure your code how you wish – but for reference, we’ll discuss

how the Tanta Sample Projects clean up and release the Windows Media Foundation

objects they store in class variables.

When WMF is no longer needed, or concludes its operations, a call to

CloseAllMediaDevices() is made. This call can be made at any time but is always

triggered from the FormClosing() event of the application as well.

/// +=

/// <summary>

/// A centralized place to close down all media devices.

/// </summary>

/// <history>

/// 01 Nov 18 Cynic - Started

/// </history>

private void CloseAllMediaDevices()

{

 HResult hr;

 LogMessage("CloseAllMediaDevices");

 // close and release our Callback Object

 if (mediaSessionAsyncCallbackHandler != null)

 {

 MF.Net Programming Fundamentals

 43

 // stop any messaging or events in the Callback Object

 mediaSessionAsyncCallbackHandler.ShutDown();

 mediaSessionAsyncCallbackHandler = null;

 }

 // close the session (this is NOT the same as shutting it down)

 if (mediaSession != null)

 {

 hr = mediaSession.Close();

 if (hr != HResult.S_OK)

 {

 // just log it

 LogMessage("call to mediaSession.Close failed. Err=" + hr.ToString());

 }

 }

 // Shut down the media source

 if (mediaSource != null)

 {

 hr = mediaSource.Shutdown();

 if (hr != HResult.S_OK)

 {

 // just log it

 LogMessage("call to mediaSource.Shutdown failed. Err=" + hr.ToString());

 }

 Marshal.ReleaseComObject(mediaSource);

 mediaSource = null;

 }

 // Shut down the media session (note we only closed it before).

 if (mediaSession != null)

 {

 hr = mediaSession.Shutdown();

 if (hr != HResult.S_OK)

 {

 // just log it

 LogMessage("call to mediaSession.Shutdown failed. Err=" + hr.ToString());

 }

 Marshal.ReleaseComObject(mediaSession);

 mediaSession = null;

 }

 // close the media sink

 if (mediaSink != null)

 {

 Marshal.ReleaseComObject(mediaSink);

 mediaSink = null;

 }

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::CloseAllMediaDevices

The actual contents of the CloseAllMediaDevices() function varies from application

to application. In this particular example, taken from the

TantaAudioFileCopyViaPipelineMP3Sink Sample Project, we can see that the Callback

Object for the Media Session is the first thing shut down. Shutting down the Media

Session is a two-step process. First the Media Session is closed with a call to its Close()

function sometime later the Media Session is finally shut down with a call to its

Shutdown() function. The call to Close() must always come first – it will trigger a

MESessionClosed event which may be useful to whomever is looking for that sort of

notice. Once the Media Session has been closed, very few of the functions on the

IMFMediaSession interface are operational. Pretty much just the Shutdown() function

and a few other informational ones are available. Note that the Media Source and

Media Sink are also released in the CloseAllMediaDevices() function because they

too are class variables. Every other WMF object obtained (however briefly) by the

application was released as soon as it was no longer needed.

MF.Net Programming Fundamentals

44

GUIDS

Simply put, GUID’s are 128 bit numbers and they are used like a name to identify

information. The term GUID is an acronym which stands for Globally Unique IDentifier.

Actually GUID is Microsoft’s term for it, the more general name for a GUID is UUID

which stands for Universally Unique IDentifier.

To understand why GUID’s are used, let us consider the problem they are trying to

solve. Say, for example, you have some information which has to be stored somewhere -

perhaps in the registry or in a data storage class like an Attribute (Attributes are

discussed in much more detail in the About Attributes section below). In order to make

the stored information useful it has to have a name. In normal computer code this name

would just be the name of whatever variable you stuffed the value into. This mechanism

does not really work when storing things external to the software – especially if it is

intended to be read by multiple other programs. If just the value is placed in some

memory location, how could some other program know what the value was and how it

might be used? Maybe it could use the position of the value in the store – well that

might work for a short while but if other things are adding and removing items the

concept soon breaks down. Certainly, if the value is picked out of the store and passed

around through various entities, each entity has to know before it receives it that a

particular bit of data is of a particular named type – this too breaks down in distributed

systems as each entity has to have intimate knowledge of the data it is processing.

So, what is done is to use a key-value pair. The key is a name and the value is whatever

you want it to be. If the key is a name then what name should be used? You cannot have

just everybody who wants to do so make up a text string and name something. For one

thing, human nature being what it is, people would probably come up with remarkably

similar names (size for example). A simple name string would generate naming

collisions all over the place and the system would rapidly become unusable as the same

name was used for different things. So, to fix that, one might set up some sort of

universal naming mechanism – like an enum in concept. You start at 1 and hand out

sequential values to anybody who asks. This would work in theory, but in reality, people

working remotely would just make up their own numbers and soon you would have

collisions all over the place again.

So what was done was to recognize that a randomly generated number of sufficient

length is unlikely ever to be duplicated anywhere else. That is all a GUID (or UUID) is - a

random 128 bit number which somebody generated and then named. It is theoretically

possible that two randomly generated GUID’s will be a match but the odds are

infinitesimal – you can easily look up the math in any search engine if you wish.

 MF.Net Programming Fundamentals

 45

You will see GUID’s used all over the place in Windows Media Foundation. They

sometimes visually look a lot like enums when used in code – but they are not – they are

just tags or labels. Once you understand this, the available sample code becomes much

more understandable. Also note that there is no central location in which all of the

GUIDs in Windows Media Foundation are recorded. For example, the GUID

MFMediaType.Audio is located in the MFMediaType class and the

MFAttributesClsid.MF_EVENT_TOPOLOGY_STATUS is located in the

MFAttributesClsid class.

C# has a dedicated Guid datatype which can deal with GUID’s and so it is trivial to do

things like compare GUIDs or pass them in and out of functions. It is important to note

that GUIDs should never be sequential or related in any way and that if you ever need a

new one you can use any one of a dozen online GUID generators. The Guid datatype

also has a static function which can generate new, unique GUID’s for you. It is a simple

process - a call like Guid myGuid = Guid.NewGuid() will do it. Note that in C# the Guid

datatype is actually a struct and in C# structs are value types. Thus you cannot declare a

new Guid variable with a statement like Guid myGuid = null. If you do this you will

get a compile time error. The proper declaration for an unused Guid would be Guid

myGuid = Guid.Empty.

In general, you never need to know what the 128 bit content of a GUID is. The actual

value is stored in a variable of type Guid and you use the names of these variables as

you would an enum. So here is an important tip…

If you go around thinking of GUIDs as a user generated,

distributed, always unique enum you will not go too far

wrong.

You will also see the acronym CLSID being used. Technically, a CLSID is a GUID that

identifies a COM object. In general, in order to create a COM object, you need to know

its CLSID. Actually, the name CLSID is another handy tip for getting a handle on things in

WMF…

In general, if you see a GUID referred to in Windows Media

Foundation as a CLSID you know you are probably working

in some way with a COM object and not some chunk of

data being passed around the system.

MF.Net Programming Fundamentals

46

ABOUT ATTRIBUTES

Windows Media Foundation uses Attributes to store configuration information. You will

be dealing with them constantly and so it is a good idea to get an understanding of what

they are and what they do.

An Attribute of an object is simply a key-value pair in which the key is stored in that

object as a GUID and the data is stored in that object as a class type called a

PropVariant. Since most WMF entities will need more than one configuration item,

WMF objects will maintain a collection of these key-value pairs. It should be noted that,

since the WMF objects configuration is effectively just a lookup-list of items based on

the value of the key, the order in which you add Attributes to the WMF object is

irrelevant. Similarly, if you are enumerating the Attributes in a WMF object, you cannot

rely on there being any consistent order in which the Attributes are returned.

In Windows Media Foundation there is no MFAttribute

class. The Attribute itself is a key-value pair consisting of a

GUID and a PropVariant and any object which maintains

such a key-value pair is considered to have an Attribute.

As you might imagine, there is a considerable need to set, retrieve and store the

Attributes in an object and so it is likely there is a standard collection class for this. In

fact there is such a class, the actual type of which is unknown (see the discussion in the

Most WMF Objects are Interfaces section), however the instantiated object does

implement the IMFAttributes interface. So, how do you create this useful Attribute

container class which will enable you to build your own collection of Attributes? The

answer is that you use a call to the static MFCreateAttributes() function in the

MF.Net MFExtern library. Note that the MFCreateAttributes function is somewhat

misleadingly named – it does not actually create any Attributes – you have to do that

yourself. What the MFCreateAttributes function actually does do is create a container

to which you can add your own Attributes. It probably should be named something like

MFCreateAttributeContainer, however, it is not, so you will just have to mentally

translate that odd name.

There is a standard interface which manipulates a

collection of Attributes and this is called IMFAttributes.

Note that many Windows Media Foundation objects will also implement the

IMFAttributes interface. Some of them will meet the requirements of this interface

 MF.Net Programming Fundamentals

 47

internally others will just create and maintain an internal IMFAttributes object as an

Attribute store.

PROPVARIANT

In the following sections we are going to discuss Attributes in detail and the usage of

this concept is ubiquitous in Windows Media Foundation. To understand WMF you will

need to understand Attributes, and in order to understand Attributes, you will first need

to have a good background in a supporting concept known as the PropVariant. Attribute

data is stored in PropVariant datatypes and although this is the primary usage for the

PropVariant construct in MF.Net, you will also occasionally see PropVariants used

independently here and there in Windows Media Foundation code.

Before we go into what a PropVariant is, let’s discuss some background as to why a

PropVariant was thought to be necessary in the first place. Normally when a function is

called the data in, or out, is strongly typed. You know perfectly well if you are passing in

a float or receiving a bool or whatever. A PropVariant allows the system to pass

around data in which the data type is self-described. In other words, the PropVariant

functions in C++ kind of like an object base class construct does in C# except that a

PropVariant really can only contain a specific list of value types.

A PropVariant is just a way of passing data around in a

distributed multi-threaded system in which the data itself

tells the recipient what data type it is.

C++ implements the PropVariant as a struct which has only two items of any

importance. The first of these is a field containing a VARTYPE enum named vt. This field

describes the type of data the structure contains. Besides a few reserved fields, the

remainder of the struct is a union of numerous named fields – one for each data type.

The code below shows the first part of the definition.

typedef struct PROPVARIANT {

 VARTYPE vt;

 WORD wReserved1;

 WORD wReserved2;

 WORD wReserved3;

 union {

 CHAR cVal;

 UCHAR bVal;

 SHORT iVal;

 USHORT uiVal;

…

Source: https://msdn.microsoft.com/en-us/library/windows/desktop/aa380072(v=vs.85).aspx

If you are unfamiliar with C++ all you really need to know is that in a union the variables

cVal, iVal etc. all use exactly the same memory – they overlay each other. That is what

MF.Net Programming Fundamentals

48

the union operator does. Thus you can refer to cVal and get a character and iVal and

get the same data as an integer. Of course, if the PropVariant really contains a four byte

iVal and you access it as a 1 byte cVal you might get a very odd character indeed. The

PropVariant does not convert or cast the data – it just returns whatever happens to be

there as whatever datatype it is referred to.

C# does not possess an operator which matches the C++ union in function. Accordingly,

the PropVariant is implemented as a class and the data is stored in individual variables

which do not share memory. Thus, if you store an int value into a C# PropVariant

class and subsequently try to access that stored data via the GetUInt() call you will not

get back an unsigned version of the previous int value. Unlike C++, in the C#

PropVariant, the two values are stored in entirely different memory locations. It is a

good idea to keep this fundamental difference in mind if you are reading C++ sample

code which uses PropVariant structs. This is important enough to write it out again and

put it in a big warning notice – if you are translating C++ WMF source code to C# you

need to be aware of this difference things will not work the same.

WARNING: In C# the PropVariant is implemented as a

class and the data is stored in individual variables which

do not share memory. Unlike C++ which uses a union

structure, in the C# PropVariant, the two values are

stored in entirely different memory locations.

Mostly, however, it is rare when working with Windows Media Foundation to need to

look at the data content of a PropVariant. Typically, you are populating one with some

data and sending it off to WMF to process. In such cases, MF.Net will automatically

Marshal the C# PropVariant into a C++ PropVariant on your behalf and you do not need

to concern yourself with the details.

The C# PropVariant class contains numerous overloaded constructors and creating one

with the new operator is enough to set the data and the record the datatype internally.

An example of this creation process would be new

PropVariant((Int64)presentationTime) which creates a PropVariant class with a

stored Int64 bit value.

WARNING: Take very great care to get the datatype

correct when creating a PropVariant object. The recipient

will almost certainly check the datatype for correctness

and if you get it wrong it will throw an error.

 MF.Net Programming Fundamentals

 49

This error is more subtle than it seems because the usual compile time checks are

invalidated. The example below demonstrates how a data type error can occur with a

PropVariant.

// Get the presentation time as a UInt64

UInt64 presentationTime = TantaWMFUtils.GetPresentationTimeFromSession(mediaSession);

// the line below will not work and you will not get

// a compile time error. mediaSession.Start() expects an

// Int64 not a UInt64 value.

// mediaSession.Start(Guid.Empty, new PropVariant(presentationTime));

// the cast here makes it work

mediaSession.Start(Guid.Empty, new PropVariant((Int64)presentationTime));

Source: None

In the above code section note how the PropVariant which is passed into the

mediaSession.Start() call is a UInt64. The problem arises because the

mediaSession.Start() call actually expects and Int64. Since in C#, the PropVariant

UInt64 storage does not share the same memory like it does in C++, the value you input

cannot just “be treated as a UInt64”. If you do not perform the cast (as shown in the

second example) so as to activate the Int64 version of the constructor, an invalid value

will be passed into WMF when MF.Net converts the PropVariant to a C++ version for the

WMF layer to use.

CREATING AND POPULATING ATTRIBUTES

The code section below illustrates the creation and population of an IMFAttributes

object which is then used to provide configuration parameters to another WMF

function.

IMFMediaSource videoSource = null;

HResult hr = 0;

IMFAttributes attributeContainer = null;

try

{

 // Initialize an attribute store. We will use this to

 // specify the enumeration parameters.

 hr = MFExtern.MFCreateAttributes(out attributeContainer, 2);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed on call to MFCreateAttributes, retVal=" + hr.ToString());

 }

 if (attributeContainer == null)

 {

 // we failed

 throw new Exception("attributeContainer == MFAttributesClsid.null");

 }

 // setup the attribute container, it is always a VIDEO SOURCE here

 hr = attributeContainer.SetGUID(

 MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE,

 CLSID.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_GUID);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed setting up the attributes, retVal=" + hr.ToString());

 }

 // set the formal (symbolic name) name of the device as an attribute.

MF.Net Programming Fundamentals

50

 hr = attributeContainer.SetString(

 MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_SYMBOLIC_LINK,

 symbolicLinkStr);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed setting up the symboic name, retVal=" + hr.ToString());

 }

 // get the media source from the symbolic name

 hr = MFExtern.MFCreateDeviceSource(attributeContainer, out videoSource);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed on call to MFCreateDeviceSource, retVal=" + hr.ToString());

 }

}

finally

{

 // make sure we release the attribute memory

 if (attributeContainer != null)

 {

 Marshal.ReleaseComObject(attributeContainer);

 }

}

Source: Source: TantaWMFUtils::GetVideoSourceFromSymbolicName

The purpose of the above code is to get a Media Source object (in this case a USB

camera) from WMF. However don’t worry too much about that particular detail just

now. What we need to focus on in the above is the method in which the parameters of

the required Media Source are supplied to the MFExtern.MFCreateDeviceSource

function which subsequently finds that Media Source for us.

As can be seen above, a call to MFExtern.MFCreateAttributes() creates an

IMFAttributes object.

 // Initialize an attribute store.

 hr = MFExtern.MFCreateAttributes(out attributeContainer, 2);

We also state at creation time that we will be using two Attributes, hence the number 2

in that call. The two Attributes needed are the media type and a string which is the

name of the device. It is useful to take a bit of time and note carefully how this works.

Each Attribute is a key-value pair and the key is always a GUID. The value can be

anything and, in the source type Attribute, the value is itself a GUID. The code is

reproduced below.

 // setup the attribute container, it is always a VIDEO SOURCE here

 hr = attributeContainer.SetGUID(

 MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE,

 CLSID.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_GUID);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed setting up the attributes, retVal=" + hr.ToString());

 }

So basically what the above code is saying is that “This Attribute specifies a video source

type since the key is a MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE GUID and the value for

this key is itself a GUID and this value is

MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_GUID”.

 MF.Net Programming Fundamentals

 51

Note that the MFExtern.MFCreateDeviceSource function expects this. It expects to see

a key of the MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE GUID and it expects the value for

that key to be a GUID. If this key is not present it will throw an error. If the value GUID is

invalid, or cannot be found, it will also throw an error.

Let’s have a look at the creation of second Attribute. The code section is reproduced

below.

 // set the formal (symbolic name) name of the device as an attribute.

 hr = attributeContainer.SetString(

 MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_SYMBOLIC_LINK,

 symbolicLinkStr);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed setting up the symboic link, retVal=" + hr.ToString());

 }

In this Attribute we are supplying the name of the video capture device – which is, for

some reason, called a symbolic link in Windows Media Foundation. This name was

obtained earlier by enumerating all the video capture devices on the system. As a key

for the Attribute, we supply the standard GUID that indicates the value is a symbolic link

and then we supply the name of the device itself as a string.

It is at this point that we begin to see the usefulness of Attributes as configuration items

rather than as just a complicated way of passing in parameters to a function. We

needed the first Attribute to indicate that it was a video capture device that was of

interest. Once we have done that we specified the device name via another Attribute. If

we had specified that we require an audio capture device in the first attribute (using a

MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_AUDCAP_GUID) we would be required to use a

different GUID and value in the second Attribute. In this example, in order to obtain an

audio source device we could use a device endpoint id found by enumerating the audio

devices on the system and the

MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_AUDCAP_ENDPOINT_ID GUID. The Device

Endpoint ID for an audio capture device is also a string – but it is not a nice readable

“friendly name” as it is in the case of the video capture device.

So, we can create either a video capture device or an audio capture device simply by

changing the contents of the IMFAttributes object we pass in as a parameter on the

MFExtern.MFCreateDeviceSource function call. Even if the types of data and

parameters were different, the Attribute object can handle this. It is illustrative to

imagine how this multiple-case example might look if the configuration data was

supplied as standard parameters in a C# call. It is possible to see how this sort of

requirement might be met via polymorphism – however things would start to get a bit

tricky if, as in the case above, two scenarios used the same data types. In that event you

MF.Net Programming Fundamentals

52

have to start specifying an Enum describing type of data for any one parameter position

and then you are right back to a key-value pair type situation.

ENUMERATING ATTRIBUTES

The above scenarios discussed in detail the population of an IMFAttributes object for

the purposes of providing configuration information to a function call. It is also possible

to enumerate all of the Attributes in an object. The code below illustrates the process of

examining each attribute in an object implementing the IMFAttributes interface in

order to better understand the capabilities of that Media Type.

public static HResult EnumerateAllAttributesAsText(

 IMFAttributes attributesContainer,

 List<string> attributesToIgnore,

 int maxAttributes,

 out StringBuilder outSb)

{

 Guid guid;

 PropVariant pv = new PropVariant();

 // we always return something here

 outSb = new StringBuilder();

 // sanity check

 if (attributesContainer == null) return HResult.E_FAIL;

 // loop through all possible attributes

 for (int attrIndex = 0; attrIndex < maxAttributes; attrIndex++)

 {

 // get the attribute from the mediaType object

 HResult hr = attributesContainer.GetItemByIndex(attrIndex, out guid, pv);

 if (hr == HResult.E_INVALIDARG)

 {

 // we are all done, outSb should be updated

 return HResult.S_OK;

 }

 if (hr != HResult.S_OK)

 {

 // we failed

 return HResult.E_FAIL;

 }

 string outName = TantaWMFUtils.ConvertGuidToName(guid);

 // are we ignoring certain ones

 if ((attributesToIgnore!=null) && (attributesToIgnore.Contains(outName))) continue;

 outSb.Append(outName + ",");

 }

 return HResult.S_OK;

}

Source: TantaWMFUtils::EnumerateAllAttributesAsText

The EnumerateAllAttributesAsText static function in the TantaWMFUtils library takes

a IMFAttributes object and uses the GetItemByIndex function in a for loop to

examine each attribute in turn. Once it has the attribute, the function converts it to a

nice human readable form and appends it to a string. Since the output is probably

intended for display it also appends a comma between each attribute name and also has

the capability to filter out certain attribute names that are not desired in the output.

Thus it is a relatively simple task to list all of the attributes contained in an object such

as a Media Type.

 MF.Net Programming Fundamentals

 53

public static HResult EnumerateAllAttributeNamesInMediaTypeAsText(

 IMFMediaType mediaTypeObj,

 bool ignoreMajorType,

 bool ignoreSubType,

 int maxAttributes,

 out StringBuilder outSb)

{

 // we always return something here

 outSb = new StringBuilder();

 // sanity check

 if (mediaTypeObj == null) return HResult.E_FAIL;

 if ((mediaTypeObj is IMFAttributes) == false) return HResult.E_FAIL;

 // set up to ignore

 List<string> attributesToIgnore = new List<string>();

 if (ignoreMajorType == true) attributesToIgnore.Add("MF_MT_MAJOR_TYPE");

 if (ignoreSubType == true) attributesToIgnore.Add("MF_MT_SUBTYPE");

 // just call the generic TantaWMFUtils Attribute Enumerator

 return TantaWMFUtils.EnumerateAllAttributesAsText(

 (mediaTypeObj as IMFAttributes),

 attributesToIgnore,

 maxAttributes,

 out outSb);

}

Source: TantaMediaTypeInfo::EnumerateAllAttributeNamesInMediaTypeAsText

The important point to realize is that the only reason the

EnumerateAllAttributeNamesInMediaTypeAsText function works in the above code

section is because a Media Type object also implements the IMFAttributes interface

and thus the GetItemByIndex()call is available.

As well as providing a useful container which enables

Attribute objects to be added or removed, any object

implementing the IMFAttributes interface will enable

the Attributes it contains to be enumerated and examined.

This is a requirement of the IMFAttributes interface and

is another useful feature of the Attribute mechanism.

Sometimes the object with Attributes does not implement the IMFAttributes interface

directly and you then have to get the internal Attribute container from that object in

order to access the attributes it contains. In many cases, as described above, the object

itself just explicitly implements the IMFAttributes interface in which case you can just

directly query the object.

ATTRIBUTE CODE CONVERSION FROM C++

As you look around on the Internet you will probably find much more help and sample

code online for WMF in C++ and almost nothing in C#. This means you will have to

translate the code. Sections of code containing Attributes are particularly prone to this

requirement since they deal with such a wide variety of data types. For example, how

do you translate C++ code in which a string is passed in as a pointer to a null terminated

MF.Net Programming Fundamentals

54

memory location into a C# call using a standard string object? Usually this sort of thing is

pretty straight forward if you know how and there is an entire section at the end of this

document which describes the most common cases – please see the Converting

Between C++ and C# Code Examples appendix for details.

HRESULTS

Remember how, in a previous section (GUIDs), it was mentioned that it would be

awkward and problematic to use a specific set of numbers as a universal naming

mechanism. Well, simply put, HResult’s are really just a version of that. HResult codes

are a bit of a historical legacy and are an attempt to use defined number ranges to

represent error codes and return values. In MF.Net they are implemented as an enum

and there are around 350 values. Of course, this is just the MF.Net HResult enum –

other systems would have others and they could have the same numerical values as the

ones in the WMF HResult enum. This, as discussed previously, is the downside of using

a central authority to name things.

You will see HResult values everywhere in Windows Media Foundation programming –

just about every procedure call you see will output an HResult as a return code.

Typically in WMF, one does not see an object being used as return value as one

sometimes does in other systems. For example, a Presentation Descriptor being created

from a Media Session would be coded as follows…

HResult hr = mediaSource.CreatePresentationDescriptor(out sourcePresentationDescriptor);

if (hr != HResult.S_OK)

{

 throw new Exception("call to CreatePresentationDescriptor failed. Err=" + hr.ToString());

}

if (sourcePresentationDescriptor == null)

{

 throw new Exception("call to CreatePresentationDescriptor failed. srcPD == null");

}

Source: TantaCommon::ctlTantaEVRFilePlayer::OpenVideoFileAndPrepareSessionAndPlay

Note that the return value is an HResult and the actual object being created is returned

in an out variable. Of course, one has to check the return code and, because of

defensive programming, it is also a good idea to check the output object

(sourcePresentationDescriptor in this case) for null as well.

A return of HResult.S_OK is the standard acknowledgement of success. HResult.S_OK

equates to zero in the HResult enum and any other non-zero value is considered a fail.

The HResult codes returned by any call are documented. For example, the

CreatePresentationDescriptor call above can return the following HResult values…

S_OK The method succeeded.

MF_E_SHUTDOWN The media source's Shutdown method has been called

 MF.Net Programming Fundamentals

 55

Source: https://msdn.microsoft.com/en-us/library/windows/desktop/ms702261(v=vs.85).aspx

The MF.Net library provides some tools that can be used to process HR values and

render them into human readable form. For example, you will see the

GetExceptionForHR and ThrowExceptionForHR calls used fairly often in the available

MF.Net sample code. The Tanta Sample Projects avoid the use of these calls preferring

to explicitly document the return value and throw an exception when necessary.

Remember, HResult is just an enum so if you just want to know the enum label text for

use in an error message a simple hr.ToString() will do the job nicely.

Note: For those of you who know a bit about the

Component Object Model (COM) will probably realize that

a COM function must return an HResult – the standard

requires it. Most of the WMF objects that you will use will

actually be interfaces exposed by COM objects so the

return values from calls into their functions will always be

HResults. Although the usage of an HResult is not

mandatory in calls to internal Windows Media Foundation

functions (such as the ones in the MFExtern library), those

return values are used extensively for consistency reasons.

THE C++ VS C# CODE STRUCTURE

The Tanta Sample projects will probably be quite useful to you – however, you are going

to want to dig around on the Internet and review other code samples. A lot of these will

be C++ examples that you will have to translate (see the Converting Between C++ and

C# Code Examples Chapter for assistance on this). In that, and in the MF.Net C#

samples, which are a direct port, you will probably see the use of the Succeeded()

function testing the HResult return value used in a staircase manner as illustrated in the

example code below.

HResult ConfigureEncoder(

 EncodingParameters eparams,

 IMFMediaType pType,

 IMFSinkWriter pWriter,

 out int pdwStreamIndex

)

{

 HResult hr = HResult.S_OK;

 IMFMediaType pType2 = null;

 hr = MFExtern.MFCreateMediaType(out pType2);

 if (Succeeded(hr))

 {

 hr = pType2.SetGUID(MFAttributesClsid.MF_MT_MAJOR_TYPE, MFMediaType.Video);

 }

MF.Net Programming Fundamentals

56

 if (Succeeded(hr))

 {

 hr = pType2.SetGUID(MFAttributesClsid.MF_MT_SUBTYPE, eparams.subtype);

 }

 if (Succeeded(hr))

 {

 hr = pType2.SetUINT32(MFAttributesClsid.MF_MT_AVG_BITRATE, eparams.bitrate);

 }

 if (Succeeded(hr))

 {

 hr = CopyAttribute(pType, pType2, MFAttributesClsid.MF_MT_FRAME_SIZE);

 }

 if (Succeeded(hr))

 {

 hr = CopyAttribute(pType, pType2, MFAttributesClsid.MF_MT_FRAME_RATE);

 }

 if (Succeeded(hr))

 {

 hr = CopyAttribute(pType, pType2, MFAttributesClsid.MF_MT_PIXEL_ASPECT_RATIO);

 }

 if (Succeeded(hr))

 {

 hr = CopyAttribute(pType, pType2, MFAttributesClsid.MF_MT_INTERLACE_MODE);

 }

 pdwStreamIndex = 0;

 if (Succeeded(hr))

 {

 hr = pWriter.AddStream(pType2, out pdwStreamIndex);

 }

 SafeRelease(pType2);

 return hr;

}

Source: MFCaptureToFile-2010::Ccapture.cs::ConfigureEncoder

The above code, taken from the standard MF.Net samples, is a faithful C# port of the

C++ Windows Media Foundation code examples. It is not wrong, per-se, but it does do

things a lot more awkwardly than is necessary in C# which has constructs like try-

catch-finally blocks. In C# you would probably code this up as something like the

following …

HResult HResult ConfigureEncoder(

 EncodingParameters eparams,

 IMFMediaType pType,

 IMFSinkWriter pWriter,

 out int pdwStreamIndex

)

{

 HResult hr = HResult.S_OK;

 IMFMediaType pType2 = null;

 try

 {

 hr = MFExtern.MFCreateMediaType(out pType2);

 if (hr != HResult.S_OK)

 {

 .. throw an exception

 }

 hr = pType2.SetGUID(MFAttributesClsid.MF_MT_MAJOR_TYPE, MFMediaType.Video);

 if (hr != HResult.S_OK)

 {

 .. throw an exception

 }

 MF.Net Programming Fundamentals

 57

 hr = pType2.SetGUID(MFAttributesClsid.MF_MT_SUBTYPE, eparams.subtype);

 if (hr != HResult.S_OK)

 {

 .. throw an exception

 }

 ... and so on

 pdwStreamIndex = 0;

 if (Succeeded(hr))

 {

 hr = pWriter.AddStream(pType2, out pdwStreamIndex);

 }

 }

 finally

 {

 SafeRelease(pType2);

 }

 return hr;

}

Source: Non-working Pseudo-code Example

Obviously it is up to you how you structure your code. The point being made here is that

C# offers a lot of extra functionality over C++ in regards to error handling and trapping.

Therefore there is no reason why your code needs to exactly follow the C++ structuring

method. In particular, note that the pType2 object is always released in both of the

previous example code blocks – error or not.

Similarly, many C++ applications are designed to pass information around the system by

putting messages on the Windows Message Processor (a.k.a. the Message Pump).

Various user written entities then hook that process in order to receive notice of events.

This sort of thing is also sometimes seen in C# code, (for example, the MF.Net Samples),

which are a direct port of the equivalent C++ code. There really is no need to do this sort

of thing in a C# program and all functionality of that type can be replaced with the far

simpler C# Delegate/Event mechanisms.

MF.Net Programming Fundamentals

58

 59

Windows Media Foundation:
Getting Started in C#

Chapter 5

THE WMF COMPONENTS
The Windows Media Foundation Architecture chapter provided a whirlwind tour of the

architecture and the discussion of each of the three architecture types briefly

mentioned each major WMF component and its place in the system. This section will list

each component and provide more detail on each one. This chapter will cover much of

the same material again but this time with more depth and provide a focus on the

relationships between the components.

This section will not, however, provide an intricately detailed discussion of some of the

components – particularly if later sections are devoted to concepts which cover the

topic in more depth. For example, the section below on Transforms (Transforms) is

intended to only provide enough background to provide context and, hopefully, make

subsequent discussions more understandable. Diving into the internal details of each

object at this point would distract from the main flow and would probably not be too

useful from a learning perspective.

One of the major difficulties in a discussion of this sort is that some topics invariably

require the references to concepts not yet covered. The sections below have (hopefully)

been organized in such a way which minimizes this effect. However, you may

occasionally see some references to concepts which have not yet been discussed - or

The WMF Components

60

which have been discussed and you have forgotten about in the onslaught of all this

information. So be prepared for a bit of that and also for some duplicate coverage as

attempts are made to provide context.

It is highly advisable to read (or re-read) the Windows

Media Foundation Architecture chapter before starting in

on this chapter as that information will provide a broad

overview of the WMF system and assist your

understanding of how all the various parts fit together.

FUNDAMENTAL PROCESSING OBJECTS

There are three fundamental types of data processing entity in Windows Media

Foundation: Media Sources, Media Sinks and Media Transforms. These are the objects

that originate the media data, consume the media data or modify the media data. All of

the other entities used in WMF could be broadly classified as supporting infrastructure

which assists with the transport or control of the data as it moves through the data

processing entities. You will note that we are ignoring the Source Reader and Sink

Writer objects here as they contain their own internal Media Source and Media Sink

respectively.

MEDIA SOURCES

A Media Source originates media data and it has no inputs from other Windows Media

Foundation entities - although it can obtain raw data from various devices. WMF

components that present microphone and a video camera data to the system are

examples of streaming Media Sources and the input data to both is provided by the

Windows Device Drivers. A Media Source is, in general, specific to the type of input and

it knows how to interact with it’s device. An example of a non-streaming Media Source

is a WMF entity which reads a file on a disk - in that case the input data is provided by

the operating system.

For any one Media Source there is typically only one input of raw data. Thus, if your

application is recording both sound and video, then you will have two Media Sources in

your application. A file being read from disk may well contain both sound and video.

This is still only one input, however, and it is the job of the Media Source to split these

two media types into separate streams. It really does not matter to WMF if the raw data

 The WMF Components

 61

originated from two independent Media Sources (microphone and camera) or if the two

streams were split from one Media Source (the file on disk).

You will also see references to a WMF entity named the Source Reader. The Source

Reader object is not a true Media Source – although it does contain a Media Source and

functions similar to one. The purpose of the Source Reader entity is to encapsulate a lot

of common Media Source functionality and present it as one easy to use object.

MEDIA SINKS

Similarly, Media Sinks consume data and produce no output for other WMF objects. In

general, there are two types of Media Sink – the renderers which present the data to

the user and the recorders (or archivers) which store media data. The Enhanced Video

Renderer (discussed in the An Overview of the EVR section of the Rendering Audio and

Video chapter) is an example of the former while the MPEG-4 file sink supplied as part

of WMF is an example of the latter.

Media Sinks can accept multiple streams and it is their job to combine these streams in

an appropriate way. In the case of an archive sink, it means ensuring that both streams

are correctly encoded into the same file in the specified format.

Similar to the earlier discussion of Media Sources, you will also see references to a

Windows Media Foundation entity named the Sink Writer which provides a wrapping

mechanism for Media Sinks. The Sink Writer object is also not a true Media Sink –

although it does contain a Media Sink and can be used in a similar way

AN INTERFACE DIGRESSION

Let’s take a bit of time to review our previous discussion of interfaces (see the Most

WMF Objects are Interfaces section in the MF.Net Programming Fundamentals

chapter). You will need a solid knowledge of interfaces in order to properly understand

the material in the following sections so it is worth repeating.

In order to ensure applications interact consistently with objects of a specific type,

Windows Media Foundation has formalized the actions of each object it implements.

This formalized behavior manifests itself as a standardized and documented set of

function calls, parameters and return values. In general, the possible actions of every

WMF object are highly constrained and specified in considerable detail.

The WMF Components

62

In Windows Media Foundation a set of rigidly defined behaviors an object must

implement is called an Interface. In MF.Net the WMF interfaces are physically

implemented as C# Interfaces because their intent and behavior is identical. We will use

Media Sources and Media Sinks as an illustrative example in this discussion because we

want to mention Interfaces in subsequent sections. It is important to realize that each

and every WMF object implements one or more types of C# Interface and these

translate exactly into the Windows Media Foundation Interfaces you will see defined in

the online help files.

This implies that there is a specifically defined interface for both the Media Source and

Media Sink – and, indeed, there is: IMFMediaSource and IMFMediaSink. Any object

which implements the IMFMediaSink interface is a Media Sink and, similarly, any object

which implements the IMFMediaSource interface is a Media Source. As an example, if

you write your own Media Sink you will have to ensure that the object fully supports the

IMFMediaSink interface. If it does, it can be used anywhere in the Pipeline that a Media

Sink can be used. All the Media Session is looking for in a sink object is that it

implements the IMFMediaSink interface. It really does not care about anything else that

object may be able to do. Please be aware that writing your own Media Sink (or Media

Source) is an advanced topic and it will not be discussed in this book – so don’t bother

digging around looking for it.

There are Interfaces for every conceivable collection of actions and some (most)

Windows Media Foundation objects implement multiple interfaces. For example, the

Enhanced Video Renderer (EVR) which displays video on the screen is an IMFMediaSink.

It is also (among other things) an IEVRTrustedVideoPlugin, an IMFDesiredSample, an

IMFVideoDisplayControl, an IMFVideoMixerBitmap, an IMFVideoMixerControl, an

IMFVideoPresenter, an IMFVideoProcessor, an IMFVideoRenderer and an

IMFVideoSampleAllocator. All-in-all, the EVR implements well over sixteen additional

interfaces and probably numerous others which are not documented.

By now you have probably figured out that all Windows Media Foundation Interfaces

start with the initials “IMF”. This is true, but you will sometimes see other interfaces in

use such as IActivate. Interfaces with names like that will be COM interfaces (not

WMF) but you will see them used here and there. As a side note, the interface name is a

great thing to search on if you need more information on a topic since it does not collide

with anything non-WMF in most search engines.

It should be noted that neither the Source Reader nor the Sink Writer objects

implement the IMFMediaSink and IMFMediaSource interfaces. The Source Reader

implements the IMFSourceReader interface and the Sink Writer implements an

 The WMF Components

 63

IMFSinkWriter interface. This, ultimately, is why you cannot add a Source Reader or

Sink Writer to the Pipeline. The Media Session requires an IMFMediaSource or an

IMFMediaSink (or an IMFTransform) and nothing else will do.

CREATING WMF COMPONENTS

We are not going to cover the topic of creating Windows Media Foundation Objects in

detail here since there is an entire section of this book devoted to the topic of creating

WMF objects (see the WMF Object Creation is Indirect section of the MF.Net

Programming Fundamentals chapter). However, having said that, it is important for

your understanding of the material that follows that you have a basic understanding of

the way WMF goes about creating the objects it needs.

Remember earlier in this book how it was said that pretty much every WMF object is

also a COM object. Well, one does not simply create COM objects as you would a

normal object. In other words, if you need an Enhanced Video Renderer object you just

don’t write a line of code like …

EVRRenderer myEVR = new EVRRenderer();

This concept simply does not exist in COM (and hence in WMF). For one thing, you do

not know the class name of the EVR object (the EVRRenderer() class name was just

made up in the previous sentence for illustration purposes). If you don’t, and never,

know the name of the object you want to create then how can you create it? You

cannot use the Interface name - writing something like new IMFMediaSink() is

meaningless and, even if it did work, could get you any one of a dozen different Media

Sinks.

There are several ways you can go about creating a particular WMF object.

1. You can use a special unique key (called a GUID) and request the

COM system find and create the correct object for you.

2. You can acquire something called an Activator (which is itself a

COM object) which can then be used to find and create the

correct object for you.

3. You can, in some cases, use something called a Resolver (which

works a lot like an Activator) to create the object for you. This

appears to be the WMF equivalent of a COM Activator.

4. You can call a static function which creates the correct object for

you.

The WMF Components

64

Call me a cynic (and people do) but probably the static function just uses one of the first

two previous methods and is really only intended to leave you blissfully ignorant of the

gory details.

So let us look at some specific examples of how a Media Source can be created.

CREATING A MEDIA SOURCE FROM A DEVICE

The code section below demonstrates the process of creating a Media Source from the

Symbolic Name of a device (a string which is a kind of URL or Path for devices, see the

WMF – First Contact chapter for more details). Ultimately this process is a variant on

the Static Function call method – however the parameters are passed in via an Attribute

container.

/// +=

/// <summary>

/// Returns a media source from the contents of a TantaMFDevice

/// </summary>

/// <param name="sourceDevice">the source device</param>

/// <returns>a IMFMediaSource or null for fail</returns>

/// <history>

/// 01 Nov 18 Cynic - Started

/// </history>

public static IMFMediaSource GetMediaSourceFromTantaDevice(TantaMFDevice sourceDevice)

{

 IMFMediaSource videoSource = null;

 HResult hr = 0;

 IMFAttributes attributeContainer = null;

 try

 {

 if (sourceDevice == null)

 {

 // we failed

 throw new Exception("sourceDevice == null");

 }

 if ((sourceDevice.SymbolicName == null) || (sourceDevice.SymbolicName.Length == 0))

 {

 // we failed

 throw new Exception("failed null or bad symbolicLinkStr");

 }

 if (sourceDevice.DeviceType == Guid.Empty)

 {

 // we failed

 throw new Exception("GetMediaSourceFromTantaDevice DeviceType == Guid.Empty");

 }

 // Initialize an attribute store. We will use this to

 // specify the enumeration parameters.

 hr = MFExtern.MFCreateAttributes(out attributeContainer, 2);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed MFCreateAttributes, retVal=" + hr.ToString());

 }

 if (attributeContainer == null)

 {

 // we failed

 throw new Exception("failed attributeContainer == null");

 }

 // setup the attribute container, it is always a

 // MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE here

 hr = attributeContainer.SetGUID(

 MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE,

 sourceDevice.DeviceType);

 if (hr != HResult.S_OK)

 {

 The WMF Components

 65

 // we failed

 throw new Exception("failed setting up the attributes, retVal=" + hr.ToString());

 }

 // set the formal (symbolic name) name of the device as an attribute.

 hr = attributeContainer.SetString(

 MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_SYMBOLIC_LINK,

 sourceDevice.SymbolicName);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed symbolic name, retVal=" + hr.ToString());

 }

 // get the media source from the symbolic name

 hr = MFExtern.MFCreateDeviceSource(attributeContainer, out videoSource);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed MFCreateDeviceSource, retVal=" + hr.ToString());

 }

 }

 finally

 {

 // make sure we release the attribute memory

 if (attributeContainer != null)

 {

 Marshal.ReleaseComObject(attributeContainer);

 }

 }

 return videoSource;

}

Source: TantaCommon::TantaWMFUtils::GetMediaSourceFromTantaDevice

The code sets up an Attribute container and populates it with two attributes – the first

of which describes the type of device. This is the

MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE and sourceDevice.DeviceType key value

pair. The second attribute is the Symbolic Name of the device and it uses a

MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_SYMBOLIC_LINK key. Once the

Attribute container is populated, the static function MFExtern.MFCreateDeviceSource

is called to create the Media Source. If all of the above code just seems like a long

winded replacement for what really could be a very simple static function call like…

hr = MFExtern.MFCreateDeviceSource(sourceDevice.DeviceType,

 sourceDevice.SymbolicName,

 out deviceSource);

… well you probably have a point. However, you had better just get used to technique –

you will be seeing it a lot. WMF does things the COM way and in this, as with so many

things in life, nobody much cares what you or I might think.

CREATING A MEDIA SOURCE FROM A SOURCE RESOLVER

The code section below shows a Source Resolver being used to create a Media Source

from a file.

// As with so many things WMF, the creation of the media source is indirect

// We now create a source resolver which will be used to create a media source

// from a URL, filename or byte stream. The call below returns an

// IMFSourceResolver interface pointer.

hr = MFExtern.MFCreateSourceResolver(out pSourceResolver);

if (hr != HResult.S_OK)

{

The WMF Components

66

 throw new Exception("MFExtern.MFCreateSourceResolver failed. Err=" + hr.ToString());

}

if (pSourceResolver == null)

{

 throw new Exception("pSourceResolver == null");

}

// here we use our source resolver to create the media source

MFObjectType objectType = MFObjectType.Invalid;

hr = pSourceResolver.CreateObjectFromURL(

 mediaFileName, // URL (file path and name) of the source.

 MFResolution.MediaSource, // Create a source object.

 null, // Optional property store.

 out objectType, // Receives the created object type.

 out pSource // Receives a pointer to the media source.

);

if (hr != HResult.S_OK)

{

 throw new Exception("call to CreateObjectFromURL failed. Err=" + hr.ToString());

}

if (pSource == null)

{

 throw new Exception("CreateObjectFromURL failed. pSource == null");

}

// Cast the output into our media source object

mediaSource = (IMFMediaSource)pSource;

// make sure we clean up

if (pSourceResolver != null)

{

 Marshal.ReleaseComObject(pSourceResolver);

}

Source: TantaCommon::TantaWMFUtils::GetMediaSourceFromFile

The above code uses a static function call to create the Source Resolver and the Source

Resolver is used (along with the file name) to create the Media Source.

CREATING A MEDIA SINK FROM AN ACTIVATOR

How about a Media Sink? Here is a code section that uses a static function call to get an

Activator. The Activator is later handed off to a WMF Topology Node which will

eventually create the Media Sink (in this case an EVR Video Renderer) when the Pipeline

is created.

// Create an activation object for the enhanced video renderer (EVR) media sink.

hr = MFExtern.MFCreateVideoRendererActivate(videoWindowHandle, out pRendererActivate);

if (hr != HResult.S_OK)

{

 throw new Exception("MFExtern.MFCreateVideoRendererActivate failed. Err=" + hr.ToString());

}

if (pRendererActivate == null)

{

 throw new Exception("pRendererActivate == null");

}

// Set the IActivate object on the output node. Note that not all node types use

// this object. On transform nodes this is IMFTransform or IMFActivate interface

// and on output nodes it is a IMFStreamSink or IMFActivate interface. Not used

// on source or tee nodes.

hr = outputNode.SetObject(pRendererActivate);

Source: TantaCommon::TantaWMFUtils::CreateRendererOutputNodeForStream

Don’t focus too much for the moment on what the outputNode.SetObject() call does.

Just realize that once it has the Activator it can use that object to create the EVR File

Renderer when it needs to do so.

 The WMF Components

 67

Hopefully the above two code blocks, which create the Media Source and Media Sink

from a Source Resolver or Activator, are a lot more understandable to you now - even if

you are still a bit dubious about why it is necessary to do it that way. It should be noted

that there are other methods of creating these two objects (indeed the Source Resolver

method is only appropriate for file based Media Sources). However, you can be sure

that no matter which creation process you use, you are going to be calling some other

object that does the creation for you. In other words, don’t be surprised when you see

this sort of multi-step creation process going on. It is just the way it is.

CREATING A MEDIA SINK ON A FILE

As will be discussed in The Standardization of Pipeline Components section of the

Practical WMF Architectures chapter, the creation process for Media Sinks is usually

specific to the type of Media Sink. The creation process for Media Sinks does not seem

to be consistent like it is for Media Sources. Below is a section of code which

demonstrates how to create an MP3 file sink.

private IMFMediaSink OpenMediaFileSink(string outputFileName)

{

 HResult hr;

 IMFMediaSink workingSink = null;

 IMFByteStream outbyteStream = null;

 if ((outputFileName == null) || (outputFileName.Length == 0))

 {

 // we failed

 throw new Exception("OpenMediaFileSink: Invalid filename specified");

 }

 try

 {

 // Create the media sink. We use the filename to create a byte stream and

 // then create the sink from that. The types configure the output

 // first we need a bytestream

 hr = MFExtern.MFCreateFile(MFFileAccessMode.ReadWrite,

 MFFileOpenMode.DeleteIfExist,

 MFFileFlags.None, outputFileName,

 out outbyteStream);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed on call to MFCreateFile, retVal=" + hr.ToString());

 }

 if (outbyteStream == null)

 {

 // we failed

 throw new Exception("Failed to create Sink bytestream, Nothing will work.");

 }

 // note the MP3 File sink does not seem to require the media type as part of its

 // configuration. The reasons for this are unknown. However it may be

 // due to the fact that the MP3 file spec is pretty fixed in structure and

 // as long as the input stream actually _is_ MP3 the media sink can write

 // it to the output file.

 hr = MFExtern.MFCreateMP3MediaSink(outbyteStream, out workingSink);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed MFCreateMPEG3MediaSink, retVal=" + hr.ToString());

 }

 if (workingSink == null)

 {

 // we failed

The WMF Components

68

 throw new Exception("OpenMediaFileSink: Failed to create media sink");

 }

 }

 catch (Exception ex)

 {

 // note this clean up is in the Catch block not the finally block.

 // if there are no errors we return it to the caller. The caller

 // is expected to clean up after itself

 if (workingSink != null)

 {

 // clean up. Nothing else has this yet

 Marshal.ReleaseComObject(workingSink);

 workingSink = null;

 }

 workingSink = null;

 throw ex;

 }

 return workingSink;

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::OpenMediaFileSink

There are several things to note in the above code. The first, and most obscure, is that

the MFCreateMP3MediaSink static function call wants a byte stream not a file name. For

some reason, there is no override which takes a filename. No problem, the code above

creates a byte stream from the filename and hands that to the MFCreateMP3MediaSink

static function and the MP3 file sink is created. The other item of particular interest is

that if there are errors the Media Sink is released in the catch block of the function.

Under normal conditions it is passed back for the caller to release at some other

appropriate time.

The creation process for an MP4 file sink is slightly different and will be discussed in the

Creating an MP4 File Sink section of the Practical WMF Architectures chapter.

THE PIPELINE

If you have been doing a bit of digging in your quest to understand Windows Media

Foundation you will doubtless have seen a

diagram similar to the one below in Figure 5.1.

Variations of this diagram are ubiquitous and

so, if we are going to be considered a proper bit

of WMF literature, we better include a version

of it.

Very probably, after looking at the diagram in

Figure 5.1, you are probably not all that much

more enlightened than you were previously.

The problem is that graphical representations of

the Pipeline do not really seem to provide a

Figure 5.1: A not very helpful diagram of the
Pipeline. Source: Wikipedia

 The WMF Components

 69

good sense of what is happening. So let’s change things up a bit and make a sequential

list of the things going on in the Pipeline.

A SIMPLE PIPELINE

Below is a simple, linearly ordered, sequence of the events Windows Media Foundation

might follow in order to process a packet of media data known as a Media Sample (an

object implementing the IMFMediaSample interface). This represents the Pipeline. Let’s

leave aside, for the moment, how the whole thing is originally set up and focus on the

flow of information through the system.

1. The Media Source acquires the next Media Sample of data from

the device it is reading.

2. The Media Session notices the Media Source has data ready.

3. The Media Session notices that the Media Sink can accept data.

4. The Media Session requests the data from the Media Source.

5. The Media Session hands the data to the Media Sink.

6. The Media Sink writes the data to the device (video display or file

etc.).

7. GOTO step 2

The Media Source and Media Sink each operate independently. They have their own

internal threads and will continually source and sink data as fast as they can. The Media

Session does not wait for the Media Source to fetch the data and it does not wait

around while the Media Sink writes out the data. It just hands off the Media Sample and

goes on about its business. This is why Step 7 refers back to Step 2 and not Step 1 – by

the time Step 6 is finished, the Media Source has already completed Step 1 in parallel.

It is up to the Media Session to pick the data up from the

source when it is available and give it to the sink when it

can accept it.

This implies that the Media Session controls the throttle on the data flow and that

opens up all kinds of interesting possibilities. The Media Session can, if it wishes, stop

the flow of information simply by not reading any more data from the Media Source. In

effect, we have an easy to implement Pause function. The Media Source may well have

more data to give and the Media Sink may well have the ability to write, but unless the

Media Session moves it along, the data does not go anywhere. For similar-ish reasons,

most of this sort of “flow control” functionality such as rewind, fast forward and

skipping is the purview of the Media Session. More accurately, (in WMF speak), it can be

The WMF Components

70

said that the Media Session object implements both the IMFMediaSession and

IMFRateControl interfaces and the application can interact with these interfaces to

implement various types of flow control. In fact, you can see a great deal of this sort of

thing going on in the TantaFilePlaybackAdvanced Sample Project. An extensive

discussion of the techniques involved can also be found in the Playback Control section

of the Rendering Audio and Video chapter.

It should be noted that it is sometimes said that the Pipeline operates on a “Pull Model”

in which the Media Sink pulls the data through the Pipeline. This is sort of true,

however, mostly it is really only due to the fact that the Media Sink is usually the

slowest component in the Pipeline. The Media Session is usually spinning around

waiting for the Media Sink to tell it that it is ready for more data and that is where the

“Pulling” effect is coming from.

 A PIPELINE WITH TWO BRANCHES

Let’s extend the previous concepts to see how multiple media streams might be handled

by a Media Session. Take, for example, an application that plays an MP4 file. The file

contains both video and audio data. Each type of media data in the file is going to have

to be processed and the items of each data type will appear on the Media Source in

their own distinct sequences known as Media Streams. In order to provide the viewer

with a good experience, both of the Media Streams must be rendered simultaneously.

Since the Enhanced Video Renderer (EVR) video sink is distinct from the Streaming

Audio Renderer (SAR) audio sink this implies that there is going to have to be two

branches in the Pipeline.

Now that we see the need for multiple Media Streams, let us recognize that multiple

Media Streams cause the Media Session two additional problems. Firstly, the media

data must not be displayed as fast as the Media Source can provide it otherwise the

images on the screen might just be a fast forward blur. Secondly, the play of the audio

data must be correlated in time with the play of the video data – otherwise the sounds

will not match the images on the screen. These two issues mean that the data must be

both throttled and synchronized. We have seen earlier how the throttling might be done

– the Media Session just stops requesting data from the single stream on the Media

Source. In this case, there are two streams and the Media Session can just stop

requesting data from either one as is appropriate. The Windows Media Foundation

object inside the Media Source that keeps track of the “current place” in the streams is

called the Presentation Clock. The Media Session will interact with the Media Source

and use the Presentation Clock to tune its request rate on the Media Streams. Here is

how it works…

 The WMF Components

 71

1. The Media Source video stream acquires the next Media Sample

of video data from the device it is reading.

2. The Media Source audio stream acquires the next Media Sample

of audio data from the device it is reading.

3. The Media Session notices that either of Media Streams on the

Media Source have data ready.

4. The Media Session notices that either of the Media Sinks can

accept data.

5. The Media Session checks the time in the Presentation Clock to

see if it can process any of the media streams. Each Media

Sample taken from the file has a timestamp encoded in it and

this timestamp corresponds to the time at which the sample

should be rendered.

6. If a Media Stream can be processed and the corresponding

Media Sink can accept data, then the Media Session requests the

data from the stream on Media Source.

7. The Media Session hands the data to the appropriate Media

Sink.

8. The Media Sink writes the data to the device (video display or

speaker etc.).

9. GOTO step 3

In reality it is all very logical. Notice that the Media Session is controlling the two

streams and is using the Presentation Clock within the Media Source to synchronize the

timing of this.

It should be noted (before you start getting worried) that you, as the programmer, do

not have to code up any of the above logic when using a Media Session. The whole

sequence of events is automatic and entirely controlled by the Media Session. True, you

have to create the Media Session, the Media Source, the Media Sink and set up the

streams – but once you wire everything up and set it rolling, the process is automatic.

You, as the programmer, do not interact with any of the Pipeline components. See the

TantaAudioFileCopyViaPipelineMP3Sink sample code for a simple example of single

stream MP3 version of this process. The TantaVideoFileCopyViaPipelineMP4Sink

example project performs a similar function on a two stream MP4 file.

A careful examination of the above process should reveal that if there were two distinct

Media Sources and only one Media Sink then the Media Session mechanism and readily

cope with only minor variations in operation. For example, such a scenario could occur a

The WMF Components

72

when a video camera and microphone are recording to an MP4 file. Each independent

Media Source would have one stream and the single Media Sink would have two

streams. Since a file is the target, the Media Session would probably not need to throttle

anything and would send the data to the Media Sink as soon as the Media Sink could

accept it.

Other extensions are possible. Let’s enhance the first simple Pipeline example to include

an object in the Pipeline between the Media Source and Media Sink. Such objects are

known as Media Transforms (they implement the IMFTransform interface). Transforms

have one or more input streams and one or more output streams. Transforms are

designed to perform manipulations on the data and they will be discussed in detail in

the Working With Transforms chapter. For now, just let’s just assume that the

Transform we are discussing does something benign like counting the Media Sample as

it arrives and then passes that input sample on to the output unchanged.

1. The Media Source acquires the next Media Sample of data from

the device it is reading.

2. The Media Session notices the Media Source has data ready.

3. The Media Session notices that the Transform can accept data.

4. The Media Session requests the data from the Media Source.

5. The Media Session hands the data to the Transform.

6. The Media Session notices that the Media Sink can accept data.

7. The Media Session notices that the Transform has data ready.

8. The Media Session requests the data from the Transform.

9. The Media Session hands the data to the Media Sink.

10. The Media Sink writes the data to the device (video display or file

etc.).

11. GOTO step 2

The Media Transform is just another link in the chain and it too is operating in an

independent thread. This means a lot of the steps in the above list are happening

simultaneously. The Media Session can be fetching more data at the same time as the

Media Transform is processing it.

You, as the author of the application, can write your own Transforms. In fact, there are

two examples in the Tanta Samples (TantaTransformDirect and TantaTransformInDLL)

that demonstrate how to do this and an entire chapter in this book (Working With

Transforms) discussing the process.

 The WMF Components

 73

In order to make things simple, so that you don’t have to do thread programming inside

your Transform, the Media Session maintains a queue of worker threads. The Transform

processes the data inside of this worker thread and all you have to do is supply the

code.

It should also be noted that the input format of the stream into the Transform does not

have to be the same as the format on the output stream. In fact, such format

conversions are the entire point of a large class of Media Transforms. Similarly, the

amount of data entering the Transform does not have to be the same as the amount

leaving. Compression and decompression Transforms (codecs) will always behave like

this. Lastly, it is quite possible to emit copies of the data and split the branch inside the

Transform. Thus the Media Session, if you set it up correctly, can have one stream

entering and two or more streams leaving. All of those streams must terminate on a

Media Sink though.

It should be noted that the Transform in the above process is operating in Synchronous

Mode. Asynchronous Mode Transforms are multi-threaded internally and their

interaction with the Media Session is somewhat more complicated. Ultimately though,

you don’t have to worry about it. If you ever write an Asynchronous Mode transform

(and you will probably never have to) you simply add it to the Pipeline like you would

any other Transform and the Media Session figures out what to do with it.

READER-WRITER DATA PROCESSING

The Source Reader and Sink Writer architecture may not include a Media Session but it

does contain a data transfer mechanism which could be described as a Pipeline of sorts.

In this case you, the programmer, handle the flow and transfer of the Media Samples.

Here, once again, is a list detailing how a Reader-Writer Architecture might work.

1. The Source Reader is configured.

2. The Sink Writer is configured

3. The application gets the next Media Sample from the Source

Reader

4. The application gives the Media Sample to the Sink Writer

5. GOTO step 3

Simple isn’t it - the application is the Pipeline. In this example, there is a lot of blocking

going on. Unlike with the Media Session, the data transfer process will wait in for the

Source Reader to provide the data and then it will wait until the Sink Writer finishes

writing it. You can see a working example of a Synchronous Mode Reader-Writer

The WMF Components

74

Architecture (which is what is described above) in the

TantaVideoFileCopyViaReaderWriter sample application and the process is detailed in

the Implementing the Reader-Writer Architecture section of the Practical WMF

Architectures chapter. The logical steps involved in the Asynchronous Mode Reader-

Writer Architecture are pretty much the same and so they will not be discussed here.

The major difference would be that only the read of first Media Sample would happen in

the application. Thereafter, Steps 3 and 4 would happen in a designated Callback Object

which would process the data in a similar fashion. This has the advantage that the

application is free to do other things while the information is being processed since the

Callback Object operates in its own thread.

THE HYBRID ARCHITECTURE DATA PROCESSING

For completeness, we had better discuss the structure of a Hybrid Architecture –

although by now you can probably figure out how it is going to work. Listed below is

what the flow of information through simple Pipeline which implements a Sample

Grabber Sink and a Sink Writer might look like.

1. The Media Source acquires the next Media Sample from the

device it is reading.

2. The Media Session notices the Media Source has data ready.

3. The Media Session notices that the Sample Grabber Sink can

accept data.

4. The Media Session requests the data from the Media Source.

5. The Media Session hands the data to the Sample Grabber Sink.

6. The Sample Grabber Sink gives a copy of the data to a Sink

Writer object which writes it out to disk.

7. The Sample Grabber Sink discards the original data.

8. GOTO step 2

This process is discussed in the Implementing a Hybrid Architecture section of the

Practical WMF Architectures chapter and you can see a working example in the

TantaAudioFileCopyViaPipelineAndWriter and

TantaVideoFileCopyViaPipelineAndWriter Sample Projects. The

TantaCaptureToScreenAndFile sample application also has an interesting variation on

this architecture in which the Media Sink is actually an Enhanced Video Renderer and a

custom written Transform copies the Media Samples on their way through the Pipeline

and hands them off to a Sink Writer.

 The WMF Components

 75

PIPELINE ERRORS AND EVENTS

In the following discussion we will reference only the Pipeline Architecture in order to

avoid complicating the information with multiple strands of ideas. The Reader-Writer

Architecture has a pretty simple error and event mechanism and that will be discussed

in the Implementing the Reader-Writer Architecture section. The Hybrid Architecture

error and event handling is pretty much identical to the one discussed below in the

Pipeline Architecture since any errors in the Sink Writer just propagate back via the

normal Media Session channels.

As we have seen, the Media Session controls the flow of information and the entire

Pipeline rolls along until the Media Sources run out of data or there is an error or the

application signals a stop.

Any events or errors originating from any Pipeline object

will be passed to your application via the Media Session.

This provides a sort of “single point of contact” between

your application and a wide variety of WMF objects.

Since they both interact with devices (which can be problematic) Media Sources and

Media Sinks have quite a comprehensive internal mechanism to send and receive events

or errors. This does not matter, the Media Session handles any such events or errors. In

a similar way, any event or error originating inside of a Transform will be presented to

your application via the Media Session. In practical terms, for user written Transforms in

MF.Net, this means that all you have to do is throw a standard C# exception if

something that you do not like happens inside the Transform. You will see this pattern

in use everywhere in the error checking areas of the various Transform based Tanta

Samples (see the TantaTransformDirect project). By way of illustration the code block

below is from the output Media Sample processing function in the demonstrator

Grayscale Conversion Transform.

// Get the data buffer from the input sample. If the sample contains more than one buffer,

// this method copies the data from the original buffers into a new buffer, and replaces

// the original buffer list with the new buffer. The new buffer is returned in the

// inputMediaBuffer parameter. If the sample contains a single buffer, this method

// returns a pointer to the original buffer.

// In typical use, most samples do not contain multiple buffers.

hr = InputSample.ConvertToContiguousBuffer(out inputMediaBuffer);

if (hr != HResult.S_OK)

{

 throw new Exception("call to ConvertToContiguousBuffer failed. Err=" + hr.ToString());

}

Source: TantaTransformDirect::MFTTantaGrayscale_Sync::OnProcessOutput

As mentioned previously, any events or exceptions will eventually be presented to the

application by the Media Session – but how does this information get passed from the

The WMF Components

76

Media Session to the application? Well, when you create a Media Session you also give

it a Callback Object. We have not discussed Callback Objects in detail yet - for now, just

realize that a Media Session Callback Object is a user written class implementing the

IMFAsyncCallback interface that the Media Session can call when it needs to notify

anything about an event or error. The Callback Object can be written to communicate

with the application. In essence, the Callback Object is the interface between the Media

Session and the application and you will use them extensively. Let’s take a look at the

Media Session creation process and then we will look at the operation of the Callback

Objects in a bit more detail.

CREATING THE MEDIA SESSION
// reset everything

CloseAllMediaDevices();

// Create the media session.

hr = MFExtern.MFCreateMediaSession(null, out mediaSession);

if (hr != HResult.S_OK)

{

 throw new Exception("call to MFExtern.MFCreateMediaSession failed. Err=" + hr.ToString());

}

if (mediaSession == null)

{

 throw new Exception("call to MFExtern.MFCreateMediaSession failed. mediaSession == null");

}

// set up our media session Callback Object.

mediaSessionAsyncCallbackHandler = new TantaAsyncCallbackHandler();

mediaSessionAsyncCallbackHandler.Initialize();

mediaSessionAsyncCallbackHandler.MediaSession = mediaSession;

mediaSessionAsyncCallbackHandler.MediaSessionAsyncCallBackError =

 HandleMediaSessionAsyncCallBackErrors;

mediaSessionAsyncCallbackHandler.MediaSessionAsyncCallBackEvent =

 HandleMediaSessionAsyncCallBackEvent;

// Register the Callback Object with the session and tell it that events can

// start. This does not actually trigger an event it just lets the media session

// know that it can now send them if it wishes to do so.

hr = mediaSession.BeginGetEvent(mediaSessionAsyncCallbackHandler, null);

if (hr != HResult.S_OK)

{

 throw new Exception("call to mediaSession.BeginGetEvent failed. Err=" + hr.ToString());

}

Source: TantaVideoFileCopyViaPipelineMP4Sink::frmMain::PrepareSessionAndTopology

We will return to our discussion of the Callback Object shortly – but for now let’s indulge

in a bit of digression and discuss the creation of a Media Session. The Callback Object is

an intimate part of that creation process.

The Media Session can support Pipelines with both Protected Media Path (PMP) content

and also content of the regular (unprotected) kind. Since, as mentioned previously, we

are not going to concern ourselves in this book with PMP content, there is only really

one way to create a Media Session and that is by calling the static

MFCreateMediaSession() function. This function just goes off, presumably interacts

with COM, and delivers a working Media Session object to you. Your application should

remember the Media Session object (perhaps as a class variable) as it will need it later

 The WMF Components

 77

when time comes to shut things down. That’s basically it, creating the Media Session is

trivial. It is the configuration of the Pipeline that is the tricky bit.

THE MEDIA SESSION CALLBACK OBJECT

Windows Media Foundation components use Callback Objects pretty much any time

they need to notify another component or object about events or errors which occur. In

this example, we are talking about the Callback Object associated with the Media

Session which is an object which implements the IMFAsyncCallback interface. Be

aware that not all Callback Objects are the same. Especially, do not confuse this Callback

Object with the Callback Object used by the Source Reader component in Asynchronous

Mode (which is an IMFSourceReaderCallback). The purpose may be somewhat similar

but in reality they are quite different implementations.

Note that the Callback Object the Media Session expects to use is an interface

(IMFAsyncCallback) not an object. This means your C# program has to define an object

which implements the IMFAsyncCallback interface. In the Tanta Sample Code, this

object has been made generic and is present in the TantaCommon library as the

TantaAsyncCallbackHandler class. This makes it usable by any application that

references the library. It should be noted that the TantaAsyncCallbackHandler also

inherits from the OIS base classes so you can use statements like LogMessage() and

DebugMessage() within it to record things to the log file.

To be succinct, the major function in the Callback Object is the Invoke() call. This

function gets called when there is an event of interest - this can be either an

informational status event or an error.

try

{

 ... more code

 // Get the event type. The event type indicates what happened to trigger the event.

 // It also defines the meaning of the event value.

 hr = eventObj.GetType(out meType);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to IMFMediaEvent.GetType failed. Err=" + hr.ToString());

 }

 // Get the event status. If the operation that generated the event was successful,

 // the value is a success code. A failure code means that an error condition

 // triggered the event.

 hr = eventObj.GetStatus(out hrStatus);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to IMFMediaEvent.GetStatus failed. Err=" + hr.ToString());

 }

 // Check if we are being told that the the async event succeeded.

 if (hrStatus != HResult.S_OK)

 {

 // The async operation failed. Notify the application

 if (MediaSessionAsyncCallBackError != null)

 {

 MediaSessionAsyncCallBackError(this, "Error Code =" + hrStatus.ToString(), null);

The WMF Components

78

 }

 }

 else

 {

 // we are being told the operation succeeded and therefore the

 // event contents are meaningful. Switch on the event type.

 switch (meType)

 {

 // we let the app handle all of these. There is not really much we can do here

 default:

 MediaSessionAsyncCallBackEvent(this, eventObj, meType);

 break;

 }

 }

}

catch (Exception ex)

{

 // The async operation failed. Notify the application

 if (MediaSessionAsyncCallBackError != null)

 {

 MediaSessionAsyncCallBackError(this, ex.Message, ex);

 }

}

Source: TantaCommon::TantaAsyncCallbackHandler::MFAsyncCallback::Invoke

Reading down through the code we see that for any particular event, that the Media

Session cares to notify the application about, there are two possibilities. Either the

hrStatus parameter of the eventObj.GetStatus() call contains HResult.S_OK - in

which case the event is a normal status change event. If the hrStatus parameter

contains some other HResult code, then the event is a notification of an error.

Depending on type of event we are dealing with, the Callback Object immediately hands

off the call to one of two C# delegate/events. If the Callback Event is a normal status

change then MediaSessionAsyncCallBackEvent gets called and if the Callback Event is

an error then MediaSessionAsyncCallBackError gets called. These two C# events are

populated shortly after the Media Session is created. This is what the following lines of

code in the Media Session creation code section were doing.

// set up our media session Callback Object.

mediaSessionAsyncCallbackHandler = new TantaAsyncCallbackHandler();

mediaSessionAsyncCallbackHandler.Initialize();

mediaSessionAsyncCallbackHandler.MediaSession = mediaSession;

mediaSessionAsyncCallbackHandler.MediaSessionAsyncCallBackError =

 HandleMediaSessionAsyncCallBackErrors;

mediaSessionAsyncCallbackHandler.MediaSessionAsyncCallBackEvent =

 HandleMediaSessionAsyncCallBackEvent;

Source: TantaVideoFileCopyViaPipelineMP4Sink::frmMain::PrepareSessionAndTopology

The HandleMediaSessionAsyncCallBackEvent and

HandleMediaSessionAsyncCallBackErrors are functions in the application. Thus,

these two application functions will get called whenever the Media Session has an event

or error to report. It is important to realize that when those two functions execute they

will not be on the form thread. This means that if you take any actions within them that

interact with forms or controls you will need to get back on the main form thread first.

That, ladies and gentlemen, is the way that your application is notified of events and

errors in the Pipeline. In fact, that is the only way your application interacts with the

 The WMF Components

 79

Pipeline components - other than perhaps with your own user-written transforms.

Recall that earlier it was mentioned that both Media Sources and Media Sinks send

plenty of events and error messages – these are all swept up by the Media Session and

will appear in the Callback Object in due course.

You will see this pattern of Callback Object and C# delegate/events used throughout the

Tanta Sample applications whenever a Pipeline Architecture is used. We will be

discussing the actions of those two event handlers in considerable detail in the

Implementing the Pipeline Architecture section of the Practical WMF Architectures

chapter. If you wish to review the code for those two handlers before then, have a look

at the TantaAudioFileCopyViaPipelineMP3Sink sample application. It should be

emphasized, that these two C# delegates and events are just the Tanta Sample Projects

way of doing things. If you look in other sample code you will probably see the event

and error handling mechanism implemented differently.

INDEPENDENT PIPELINE OBJECTS

The components in the Pipeline are all COM objects and they do not really know

anything about each other. This means they can be used independently of the Media

Session as long as you feed the data in and pull the data out in the correct manner. The

classic example of this is the Enhanced Video Renderer (EVR). The EVR, as you know, is a

Media Sink which displays video data. As long as the EVR object is given the correct

information in the correct way, it does not care if a WMF Media Session is providing that

data or if something else entirely is activating it. The EVR can be called from completely

different architectures and, in fact, the same EVR component you get in Windows Media

Foundation is also used to display video in DirectShow graphs. For more information on

the EVR please see An Overview of the EVR section of the Rendering Audio and Video

chapter. This book will not provide any discussion about the use of WMF components

outside of their “normal” habitat. That sort of thing is a very advanced proposition.

MEDIA STREAMS AND THE PRESENTATION

The previous section (The Pipeline) noted how the raw data originating from Media

Sources and terminating at Media Sinks is divided up into streams. Also noted was the

concept of a Presentation Clock in which the speed at which the streams are rendered is

both throttled and synchronized by the Media Session. The throttling is necessary to

ensure that the video or audio being rendered does not play too fast and the

synchronization makes certain that, if there are multiple streams in the Pipeline, they

The WMF Components

80

both render their information at the proper time. This makes the video the user sees

appear to be correct according to the sounds they hear.

It should be noted that even if only one type of data is being processed there is always a

stream. Similarly, even if the intent is to transport the data as fast as possible (a data

copying operation) there is always a Presentation Clock in use. If you are using the

Pipeline Architecture you will always be dealing with these two entities. The Reader-

Writer Architecture uses streams but does not have the concept of a Presentation Clock

– you would have to provide that sort of throttling and synchronization yourself if it was

required.

The expected behavior of streams originating on a Media Source has also been

formalized as an interface named IMFMediaStream. Every source Media Stream will

(amongst other things) be an object of type IMFMediaStream. There is not a lot of

functionality in the IMFMediaStream interface – but what is present is really important.

Using the IMFMediaStream interface you can request a new sample, get something

called the Stream Descriptor which enables you to discover the Media Sub-Types the

Media Stream supports or, if you need to, you can get the Media Source object which

originated the stream.

It should be noted that Media Sinks also implement streams in order to accept input

data. These streams are conceptually the same thing as Media Streams except that they

are called Stream Sinks and they use the IMFStreamSink interface. This is a mildly

annoying example of an inconsistent naming convention: streams on Media Sources are

Media Streams and implement the IMFMediaStream interface; streams on Media Sinks

are Stream Sinks and implement the IMFStreamSink interface. Streams into and out of

Transforms are just called streams and they do not implement any interfaces at all – the

IMFTransform interface takes care of the configuration of those streams.

Returning to the concept of the Presentation Clock where, as you might imagine, there

is an object which describes the synchronized and timed presentation of multiple

streams. This object is called a Presentation Descriptor and it also has its own interface

which defines how an application interacts with it – a Presentation is an

IMFPresentationDescriptor. The Presentation Descriptor describes all of the possible

Media Streams on a Media Source which are related by a common presentation time.

Here is an overview of how basic process works. We will go into more detail further on…

1. You have a Media Source.

2. You obtain a Presentation Descriptor from the Media Source.

 The WMF Components

 81

3. You look at each Media Stream (there is usually more than one

of these) in the Presentation Descriptor and get its Stream

Descriptor.

4. Look at the Stream Descriptor and make sure it implements the

Media Type you are interested in – there will probably be more

than one Media Type. If not, find the next Media Stream. If the

Media Type is suitable, enable the stream (“select” it in the

Stream Descriptor) and then enable the Media Type (make it

“current” in the Media Stream).

Seem simple enough doesn’t it? However, there is more going on here than meets the

eye at first glance. There can be (and usually are) a number of Media Streams present in

any one Media Source. Essentially, the Presentation Descriptor presents a sort of virtual

buffet of the available Media Streams from which your application can choose. Usually

the selection process consists of your application sitting in a loop enumerating every

possible Media Stream in the Presentation Descriptor and taking a careful look at the

details of that stream to see if it is suitable for your needs.

The details of a Media Stream are made available in a Windows Media Foundation

container known as a Stream Descriptor. The Stream Descriptor object will implement

the IMFStreamDescriptor interface and your application can use the function calls

defined by this interface to discover the underlying details of the Media Stream it

represents. Ultimately, your application will choose a Media Stream (or Media Streams)

from the Presentation Descriptor based on the contents of a Stream Descriptor.

However, be aware that there are usually a lot of options within a Stream Descriptor

and once you have chosen the Media Stream you still have to configure the stream by

enabling only one of the Media Types it contains.

It is the Stream Descriptor that is used to configure the Topology and the objects in the

Pipeline. Once the Stream Descriptors have been obtained, the Presentation Descriptor

plays no further role in the configuration of the Pipeline. Once the Pipeline has been

created, the Stream Descriptors are also no longer needed.

WHY DOES A MEDIA SOURCE CONTAIN MULTIPLE STREAMS

Before we carry on, you may well be wondering why a Media Source might contain

multiple Media Streams. There is much more complexity here than is immediately

apparent. Let’s consider an MP4 file. This file will probably have both video and audio –

and that is two distinct streams right there. Media Streams of these types would be said

to have a Media Major Type of MFMediaType.Video or MFMediaType.Audio. Less

The WMF Components

82

obviously, there could also be other Media Major Types such as sub-titles, static pictures

and many more.

It should be noted that the MFMediaType which describes the Media Major Type is just a

C# static class with a collection of Guid constants. This collection effectively acts as an

enum. This means that in Visual Studio, the easy way to inspect it is just to open up any

Tanta Sample Project, put your cursor on MFMediaType name and press F12 to see the

list. Also, in case you missed it, note that the name of the MFMediaType class does not

start with an “I”– it is not an interface. When you see some WMF entity that you have

never seen before (and you will), you can, in general, use the naming convention as a

clue to figure out what you are dealing with.

Also be aware that the Media Type object being referred to above is not just the

MFMediaType value. A Media Type object implements the IMFMediaType interface and

one of the many configuration attributes it can contain is a Media Major Type (in other

words it contains an MFMediaType value). Just to get the nomenclature sorted out be

aware that, in general, the other attributes the Media Type contains are collectively

referred to as the Media Sub-Type.

You are very unlikely to see Media Types with different Media Major Type values

involved in the same Media Stream. Theoretically it is possible – but in reality it does not

happen. This is why it is said that a Media Stream has a “Media Major Type”. In reality

this is just the Media Major Type of the currently enabled Media Type in the Stream

Descriptor. Since all Media Types in the stream will have an identical Media Major Type,

this is a convenient short-cut.

It is possible to have multiple Media Streams in a Presentation which implement the

same Media Major Type. For example, there could be separate audio streams in various

languages or separate video streams containing both the theatrical and directors cut of

a film.

Within a Media Stream representing a Media Major Type you will see multiple Media

Type objects representing a variety of options. As mentioned previously, these

attributes are collectively called Media Sub-Types and they will describe a wide variety

of options like encoding formats (NV12 or YUV) or frame sizes (640x480 or 1280x720)

and many others. We will discuss this in more detail further on but you should be aware

at this point that the Media Type objects and their content are discoverable by asking

the Stream Descriptor for an object known as a Type Handler and then asking the Type

Handler for the details. Yes, that’s correct, you cannot directly ask the Stream Descriptor

for the Media Types it offers. You have to get a Type Handler object and use it for that

 The WMF Components

 83

purpose. Very probably, the same object is that IMFStreamDescriptor is also the

IMFTypeHandler – but you should not just cast these directly. You should call

GetMediaTypeHandler() on the Stream Descriptor and use the object returned from

that call.

All-in-all you should expect to see multiple Media Streams present in any one Media

Source. In fact even Media Sources such as a webcam, which you might think would only

have one stream, can present multiple streams. Some webcams will present normal

uncompressed video on one stream and compressed video on another. Of course,

within any one Media Stream there can be multiple dozens of various Media Sub-Types

and formats. You can find a more detailed description of this in the Media Types and

Sub-Types section below and also in the WMF – First Contact chapter which discusses

discovering the Media Types of the video devices on a system.

Another thing to note is that most Media Sources embrace the concept of a default

Media Stream. In such a case the default stream of each Media Major Type will be

“selected”. In this case “selected” is just a word in WMF speak which means “enabled”.

Of course you can de-select or select any of the Media Streams you wish by calling

DeselectStream() and SelectStream() functions on the Presentation Descriptor

(these calls are part of the IMFPresentationDescriptor interface). A stream which is

not selected will not have media data generated for it by the Media Source. In reference

to a previous example, the Media Source may well have a video stream for both the

theatrical and directors cut of a film but only one of those Media Streams will be

selected by default.

This concept extends down into the Media Stream itself. Once you have your Media

Stream and its Stream Descriptor you can look at each one of the Media Sub-Types that

stream contains. Only one Media Sub-Type can be “current”. In other words it may be

possible that there are lots of encoding types (RGB, NV12 or YUV etc.) in the stream, lots

of formats (640x480 or 1280x720 etc.) and lots of other options but only one Media

Sub-Type can be “current” and that is the type of media data the Media Stream is going

to generate.

Let us recap how this works with a non-WMF example. Say, for example, you decide you

wish to eat a meal and you are in a city which offers a lot of options. First you choose

one street from many which has a variety of restaurants – this is the equivalent of

choosing your Media Source. Each restaurant on that street offers a different type of

food – these are your Media Streams and the food type is your Media Major Type. Your

scanning of the street and deciding on the type of food you wish to eat is the equivalent

of looking at each and every Media Stream in the Presentation Descriptor and making a

The WMF Components

84

decision based on the Media Major Type. Once you choose you “select” the Media

Stream. After you choose the restaurant, you sit down and look at the menu. This is the

equivalent of asking the Stream Descriptor to tell you the Media Sub-Types. Now the

restaurant only offers “set items” from the menu. In other words, you cannot pick and

choose. You can have option #5 or you can have option #17 but not both and you

certainly cannot have a bit of #5 with parts of #10 and extra egg rolls. It is just not

possible. Choosing your menu item is the equivalent of choosing the Media Type in the

Stream Descriptor based on the Media Sub-Type details. When you choose you menu

option – you make it “current”. When the Pipeline starts up, that is the type of food

which is going to be delivered. You could have chosen a different item, a different

restaurant or a different street but ultimately, whichever Media Stream you choose, you

are picking a fixed item from a menu.

From the Presentation Descriptor you “select” the Media

Stream – this is usually based on the Media Major Type.

From the Media Stream you make one of the available

Media Sub-Types “current”. This will be the encoding and

format data in which the Media Stream will be presented.

OBTAINING PRESENTATION AND STREAM DESCRIPTORS

Let’s look at the process of obtaining a Presentation Descriptor and selecting a Media

Stream. The code block below is from the TantaAudioFileCopyViaPipelineMP3Sink

example application and it does not do much more than simply choose the first selected

audio stream (MFMediaType.Audio) that it finds.

IMFPresentationDescriptor sourcePresentationDescriptor = null;

int sourceStreamCount = 0;

IMFStreamDescriptor audioStreamDescriptor = null;

bool streamIsSelected = false;

IMFMediaType currentAudioMediaType = null;

int audioStreamIndex = -1;

// A presentation is a set of related media streams that share a common presentation time.

// We now get a copy of the media source's presentation descriptor. Applications can use

// the presentation descriptor to select streams and to get information about the source

// content.

hr = mediaSource.CreatePresentationDescriptor(out sourcePresentationDescriptor);

if (hr != HResult.S_OK)

{

 throw new Exception("CreatePresentationDescriptor failed. Err=" + hr.ToString());

}

if (sourcePresentationDescriptor == null)

{

 throw new Exception("sourcePresentationDescriptor == null");

}

// Now we get the number of stream descriptors in the presentation. Each presentation

// descriptor contains a list of one or stream descriptors. These describe the streams

// in the presentation. Streams can be either selected or deselected. Only the

// selected streams produce data. Deselected streams are not active and do not produce

// any data.

hr = sourcePresentationDescriptor.GetStreamDescriptorCount(out sourceStreamCount);

 The WMF Components

 85

if (hr != HResult.S_OK)

{

 throw new Exception("CreatePresentationDescriptor failed. Err=" + hr.ToString());

}

if (sourceStreamCount == 0)

{

 throw new Exception("sourceStreamCount == 0");

}

// Check each stream in the Presentation Descriptor. Choose the first audio one

// we find irregardless of any sub formats it may use.

for (int i = 0; i < sourceStreamCount; i++)

{

 // we require the major type to be audio

 Guid guidMajorType = TantaWMFUtils.GetMajorMediaTypeFromPresentationDescriptor

 (sourcePresentationDescriptor, i);

 if (guidMajorType != MFMediaType.Audio) continue;

 // we also require the stream to be enabled

 hr = sourcePresentationDescriptor.GetStreamDescriptorByIndex

 (i, out streamIsSelected,

 out audioStreamDescriptor);

 if (hr != HResult.S_OK)

 {

 throw new Exception("GetStreamDescriptorByIndex failed. Err=" + hr.ToString());

 }

 if (audioStreamDescriptor == null)

 {

 throw new Exception("audioStreamDescriptor == null");

 }

 // if the stream is selected, leave now we will release the audioStream descriptor later

 if (streamIsSelected == true)

 {

 audioStreamIndex = i; // record this

 break;

 }

 // release the one we are not using

 if (audioStreamDescriptor != null)

 {

 Marshal.ReleaseComObject(audioStreamDescriptor);

 audioStreamDescriptor = null;

 }

 audioStreamIndex = -1;

}

// by the time we get here we should have a audioStreamDescriptor if

// we do not, then we cannot proceed

if (audioStreamDescriptor==null)

{

 throw new Exception("audioStreamDescriptor == null");

}

if(audioStreamIndex < 0)

{

 throw new Exception("GetStreamDescriptorByIndex failed. audioStreamIndex < 0");

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::PrepareSessionAndTopology

That is a lot of code to take in all at once, but if we walk through it step by step it will

not seem that hard. The first thing we do is obtain the Presentation Descriptor from the

Media Session. Disregarding all the error checking, that process is just one line…

hr = sourcePresentationDescriptor.GetStreamDescriptorCount(out sourceStreamCount);

Next we obtain the count of the number of streams in the Presentation Descriptor. The

only reason we need this is to set up a C# for loop over the streams.

hr = sourcePresentationDescriptor.GetStreamDescriptorCount(out sourceStreamCount);

After that, we enter a for loop and check each Media Stream in the Presentation

Descriptor to see if it suits our purpose. In this particular case all we require is that the

The WMF Components

86

stream has a Media Major Type of MFMediaType.Audio. We use a call to the

GetMajorMediaTypeFromPresentationDescriptor static function in the Tanta Library

for this purpose. Don’t worry too much at this point how the Media Major Type is dug

out of the Presentation Descriptor – we will cover that topic in more detail in the

following Media Types and Sub-Types section.

// we require the major type to be audio

Guid guidMajorType = TantaWMFUtils.GetMajorMediaTypeFromPresentationDescriptor

 (sourcePresentationDescriptor, i);

if (guidMajorType != MFMediaType.Audio) continue;

The next thing we have to check is that the stream is selected. As noted previously in

the Why Does a Media Source contain Multiple Streams section, the word “selected”

when used on Media Samples is just WMF speak which means “enabled”. The sample

code does not select or deselect Media Streams and, if there are none selected by

default, an error is returned.

By the time the loop finishes we will have a Stream Descriptor of the audio stream we

wish to use. We also keep the index of that Stream Descriptor in the Presentation

Descriptor around since a lot of the Tanta Common Library utility functions use that to

reference the Media Stream.

Of particular note is the ReleaseComObject() call at the bottom of the loop. Up to this

point we have not specifically provided examples of releasing Windows Media

Foundation objects. The Releasing COM Objects section in the MF.Net Programming

chapter discusses the release of COM objects (which is what WMF objects are) in more

detail. It is important to realize that if we obtain an object from Windows Media

Foundation it is up to us to release once we are done with it or we will get a memory

leak. Take careful note how the logic works in that loop – if we find a Stream Descriptor

we want to use, we store it in a local variable and leave the loop before the

ReleaseComObject() function is called. If you check the PrepareSessionAndTopology

function in the TantaAudioFileCopyViaPipelineMP3Sink example application you will see

that we take great care to release the chosen Stream Descriptor as well. You will also

note that since we obtained the Presentation Descriptor object from WMF (the Media

Source gave it to us) we also have to release that object. In general, every object we

receive from Windows Media Foundation must be released. If the object is something

we need to keep around for the duration of the process we typically store it in a class

variable and take care to release it when operations are complete. If you wish to see

how this sort of release can be done, it would be instructive to follow the treatment of

the Media Session object in the TantaAudioFileCopyViaPipelineMP3Sink sample

application.

 The WMF Components

 87

finally

{

 // Clean up

 if (sourcePresentationDescriptor != null)

 {

 Marshal.ReleaseComObject(sourcePresentationDescriptor);

 }

 if (audioStreamDescriptor != null)

 {

 Marshal.ReleaseComObject(audioStreamDescriptor);

 }

 ... <more objects released here>

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::PrepareSessionAndTopology

MEDIA TYPES AND SUB-TYPES

The Media Streams and the Presentation section has already provided some

background on the usage of Media Type objects within the context of Media Streams.

This section will provide more details on Media Types and will discuss, in some detail,

how to get the media type information from a stream and how to create and populate

your own Media Type object.

You will see later on in the Topologies section, Media Types are used extensively when

configuring the various objects that make up a Topology – after all just about everything

that processes media data will need to know the details of the encoding and format of

that data.

As was previously noted, a Media Type is an object that implements the IMFMediaType

interface. A Media Stream offered by a Media Source probably contains multiple Media

Type objects. Only one of those will be current (enabled) and the attributes of that

Media Type object will determine the format and encoding of the data in the Media

Stream.

One of the confusing aspects of configuring a Topology (and hence Pipeline) is that

sometimes, when you configure objects you can just provide a Stream Descriptor and

sometimes you have to provide a Media Type object. Be aware that in the first instance,

the object being configured is probably just discovering the Media Type information

from the current Media Type object in the Stream Descriptor. The occasions when we

have to supply a Media Type directly are not usually too much trouble since, unless we

are changing things like the format, we can often just dig the current Media Type out of

the Stream Descriptor and use that. This is why you will sometimes see a completely

new Media Type being generated, sometimes you will just see the Source Descriptor

The WMF Components

88

being used and sometimes you will just see the Media Type from the Source Stream

Descriptor being used.

GETTING MEDIA TYPES FROM THE STREAM DESCRIPTOR

The Stream Descriptor object cannot be used to access the Media Types contained

within the Media Stream. Instead, as mentioned previously, an object of type

IMFMediaTypeHandler has to be obtained from the Stream Descriptor. The reasons for

this particular arrangement are unknown – probably the implementers of Windows

Media Foundation just wanted to separate the functionality into distinct components. It

is very likely that the object which is the IMFStreamDescriptor is also the object which

is the IMFMediaTypeHandler. You should not cast these directly though – always use

the GetMediaTypeHandler() call on the Stream Descriptor for this purpose. The code

below shows how the Media Type objects can found in a Stream Descriptor

public static IMFMediaType GetMediaTypeFromStreamDescriptorById(

 IMFStreamDescriptor streamDescriptor,

 int mediaTypeId)

{

 HResult hr;

 IMFMediaTypeHandler typeHandler = null;

 IMFMediaType outMediaType = null;

 if (streamDescriptor == null)

 {

 throw new Exception("No source stream descriptor provided");

 }

 // Getting the media type from a stream has to be done by first fetching a

 // IMFMediaTypeHandler from the stream descriptor and then asking that about the

 // media type. The type handler also has to be cleaned up afterwards. This is a

 // pretty commonly required, multi-step, operation so it

 // has been factored off here as a useful bit of building block code.

 try

 {

 // Get the media type handler for the stream. IMFMediaTypeHandler

 // interface is a standard way of getting or

 // setting the media types on an object

 hr = streamDescriptor.GetMediaTypeHandler(out typeHandler);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to GetMediaTypeHandler failed. Err=" + hr.ToString());

 }

 if (typeHandler == null)

 {

 throw new Exception("call to GetMediaTypeHandler failed. typeHandler == null");

 }

 // Now we have the handler, get the media type.

 hr = typeHandler.GetMediaTypeByIndex(mediaTypeId, out outMediaType);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to GetMediaTypeByIndex failed. Err=" + hr.ToString());

 }

 if (outMediaType == null)

 {

 throw new Exception("call to GetMediaTypeByIndex failed. outMediaType == null");

 }

 // return this

 return outMediaType;

 }

 finally

 {

 // Clean up.

 The WMF Components

 89

 if (typeHandler != null)

 {

 Marshal.ReleaseComObject(typeHandler);

 }

 }

}

Source: TantaCommon::TantaWMFUtils::GetMediaTypeFromStreamDescriptorById

Note that the above code cleans up after itself as much as it can but the Media Type

object which is returned must be released by the caller.

Enumerating the Media Types (perhaps to check each one for suitability) in a Media

Stream would be a process similar to that of enumerating the Media Streams in a

Presentation Descriptor. All that is necessary is to call the GetMediaTypeCount()

function on the Type Handler object to get a total count of number of Media Type

objects the Stream Descriptor contains and then loop through each with a call to the

TantaWMFUtils function GetMediaTypeFromStreamDescriptorById described above.

CREATING YOUR OWN MEDIA TYPE

It should be noted that streams are not the only place to obtain a Media Type objects. It

is entirely possible to create and populate your own Media Type. In theory, creating a

Media Type is simple – obtaining a new Media Type is pretty much just a matter of

calling the static MFCreateMediaType() function. Usually it is the subsequent

population of the empty Media Type with all the attributes it needs which causes the

trouble. The attributes associated with any particular Media Type are highly specific to

the Media Major Type, Media Sub-Type, encoding and formats required.

Before we get into the details of how to populate a Media Type object we need to

undertake a small digression and discuss how the Media Sub-Type data is stored in a

Media Type. Windows Media Foundation rarely uses “hardcoded” variable names when

it stores data. For example, inside the Media Type object there is no variable named

“majorMediaType” which is populated with the MFMediaType enum value. WMF just

does not work that way. What Windows Media Foundation does is create a key-value

pair mechanism which stores the data and also defines an interface which can

manipulate that information. The key-value pair is called an Attribute, an object that

maintains a collection of Attributes is called an Attribute Container and the interface

used to manipulate this collection is named IMFAttributes. There is an extensive

discussion of this topic in the About Attributes section of the MF.Net Programming

Fundamentals chapter – however it is important to mention it again here in order to

give you a sense of what is happening when the Media Sub-Type data is populated in

the code section below.

The WMF Components

90

There are a variety of ways Windows Media Foundation will implement Attributes in a

particular type of object. Sometimes the IMFAttributes object is separate and distinct

and you have to get the Attribute Container by calling the QueryInterface() function

on whatever object you are working with. Other times the object actually inherits from

IMFAttributes (as well as other interfaces) and so you can just cast the object to

IMFAttributes and use the interface calls directly. The third option which is sometimes

seen is to have an interface itself inherit from IMFAttributes. This last technique is the

behavior of the Media Type object. The IMFMediaType interface directly inherits from

IMFAttributes and so you can always treat any Media Type object as an Attribute

Container without the need to cast it or specifically dig the Attribute Container out of

the object.

Now that we have a bit of an understanding of Attributes we can see why the code

section below can treat the Media Type object as an Attribute Container. The code

below creates a new Media Type and populates it with a variety of Media Sub-Type data

so that it can be used to configure the output stream of a Sink Writer object.

// now configure the SinkWriter. This sets up the sink writer so that it knows what format

// the output data should be written in. The format we give the writer does not

// need to be the same as the format it receives as input - however to make life

// easier for ourselves we will copy a lot of the settings from the videoType retrieved above

// create a new empty media type for us to populate

hr = MFExtern.MFCreateMediaType(out encoderType);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed on call to MFCreateMediaType, retVal=" + hr.ToString());

}

// The major type defines the overall category of the media data. Major types include

// video, audio, script & etc.

hr = encoderType.SetGUID(MFAttributesClsid.MF_MT_MAJOR_TYPE, MFMediaType.Video);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed setting the MF_MT_MAJOR_TYPE, retVal=" + hr.ToString());

}

// The subtype GUID defines a specific media format type within a major type. For

// example, within video, the subtypes include MFMediaType.H264 (MP4),

// MFMediaType.WMV3 (WMV), MJPEG & etc. Within audio, the

// subtypes include PCM audio, Windows Media Audio 9, & etc.

hr = encoderType.SetGUID(MFAttributesClsid.MF_MT_SUBTYPE, MEDIA_TYPETO_WRITE);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed setting the MF_MT_SUBTYPE, retVal=" + hr.ToString());

}

// this is the approximate data rate of the video stream, in bits per second, for a

// video media type. The choice here is somewhat arbitrary but seems to work well.

hr = encoderType.SetUINT32(MFAttributesClsid.MF_MT_AVG_BITRATE, TARGET_BIT_RATE);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed setting the MF_MT_AVG_BITRATE, retVal=" + hr.ToString());

}

// populate our new encoding type with the frame size of the videoType selected earlier

hr = TantaWMFUtils.CopyAttributeData(incomingVideoMediaType, encoderType,

 MFAttributesClsid.MF_MT_FRAME_SIZE);

if (hr != HResult.S_OK)

{

 The WMF Components

 91

 // we failed

 throw new Exception("Failed copying the MF_MT_FRAME_SIZE, retVal=" + hr.ToString());

}

// populate our new encoding type with the frame rate of the video type selected earlier

hr = TantaWMFUtils.CopyAttributeData(incomingVideoMediaType, encoderType,

 MFAttributesClsid.MF_MT_FRAME_RATE);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed copying the MF_MT_FRAME_RATE, retVal=" + hr.ToString());

}

// populate our new encoding type with the pixel aspect ratio of the video type selected earlier

hr = TantaWMFUtils.CopyAttributeData(incomingVideoMediaType, encoderType,

 MFAttributesClsid.MF_MT_PIXEL_ASPECT_RATIO);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed copying the PIXEL_ASPECT_RATIO, retVal=" + hr.ToString());

}

// populate our new encoding type with the interlace mode of the video type selected earlier

hr = TantaWMFUtils.CopyAttributeData(incomingVideoMediaType, encoderType,

 MFAttributesClsid.MF_MT_INTERLACE_MODE);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed copying the MF_MT_INTERLACE_MODE, retVal=" + hr.ToString());

}

// add a stream to the sink writer for the output Media type. The

// incomingVideoMediaType specifies the format of the samples that will

// be written to the file. Note that it does not necessarily need to

// match the input format.

hr = workingSinkWriter.AddStream(encoderType, out sinkWriterVideoStreamId);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed adding the output stream(v), retVal=" + hr.ToString());

}

Source: TantaCaptureToScreenAndFile::MFTTantaSampleGrabber_Sync::StartRecording

Let’s consider a few lines in detail in order to see what is going on. The line below just

creates the empty Media Type object using a static WMF function call. This is pretty

straight forward.

hr = MFExtern.MFCreateMediaType(out encoderType);

The next line sets the Media Major Type (in this case MFMediaType.Video). In

particular, note that the MFAttributesClsid.MF_MT_MAJOR_TYPE key is a GUID. In

other words, it is a known 128 bit random integer which is always used (in WMF) as a

key for the Media Major Type. You set the Media Major Type using this key and

everything else knows to find it using this key.

hr = encoderType.SetGUID(MFAttributesClsid.MF_MT_MAJOR_TYPE, MFMediaType.Video);

The SetGUID() function call is part of the IMFAttributes interface. As mentioned

previously, the only reason the above line works on a Media Type (an IMFMediaType

object) is because the IMFMediaType interface directly inherits from IMFAttributes.

You may see this being done differently elsewhere and that is probably because the

person coding it up did not realize that a Media Type is also an Attribute Container. In

The WMF Components

92

truth, this particular relationship is not documented all that well and it is not all that

common to see other Windows Media Foundation interfaces inheriting in that way.

The next line sets the encoding format.

encoderType.SetGUID(MFAttributesClsid.MF_MT_SUBTYPE, MEDIA_TYPETO_WRITE);

In this particular case, the MEDIA_TYPETO_WRITE constant is defined as

MFMediaType.H264 which is the desired output format. The

MFAttributesClsid.MF_MT_SUBTYPE key is also a defined and well known GUID which

is always used for the Media Sub-Type encoding format.

The following line sets the maximum bit rate at which the video the data can be played.

This is an integer and so we use a different call (SetUINT32 instead of SetGUID) to set

this particular Attribute value.

hr = encoderType.SetUINT32(MFAttributesClsid.MF_MT_AVG_BITRATE, TARGET_BIT_RATE);

We also have to set the frame size and when doing this we introduce an interesting

technique. Things like frame sizes are typically stored as Attributes with one key

(MF_MT_FRAME_SIZE) but as a 64 bit integer in which the upper 32 bits contain the width

and the lower 32 bits contain the height. This keeps the two data items (width and

height) together and associated under one key.

hr = TantaWMFUtils.CopyAttributeData(incomingVideoMediaType, encoderType,

 MFAttributesClsid.MF_MT_FRAME_SIZE);

In order to set the frame size we would have to build up our own 64 bit integer from the

two values and use the SetUINT64() call to set the data. The requirement to do this is a

bit of an irritation and since this sort of thing happens often enough, there are static

function calls like MFSetAttributeSize() which takes the Attribute Container object,

the GUID key value and the width and height as Uint32 values and will do the job for

you. You still have to obtain the width and height as UInt32 values though and this

would be done via a similar MFGetAttributeSize() function call. This, of course, is not

difficult but it is more coding than is necessary in this case. In the end all we really want

is the same frame size used in the source Media Type (which we have access to) to be

present in the output Media Type. So we take a bit of a short-cut and just copy it across

using the CopyAttributeData() function call located in the TantaCommon library. Here is

the code for that copy process – in case you would like to see how it works

public static HResult CopyAttributeData(IMFAttributes srcAttr, IMFAttributes tgtAttr, Guid key)

{

 PropVariant var = new PropVariant();

 HResult hr = HResult.S_OK;

 if (srcAttr == null) return HResult.S_FALSE;

 if (tgtAttr == null) return HResult.S_FALSE;

 // get the source data

 The WMF Components

 93

 hr = srcAttr.GetItem(key, var);

 if (hr != HResult.S_OK) return hr;

 // get the target data

 hr = tgtAttr.SetItem(key, var);

 return hr;

}

Source: TantaCommon::TantaWMFUtils::CopyAttributeData

Returning back to the creation and population of the Media Type, we see that the

remainder of the configuration consists of copying Attribute values from the source

Media Type to the output Media Type since we wish them to be identical.

hr = workingSinkWriter.AddStream(encoderType, out sinkWriterVideoStreamId);

At the end, we give the populated Media Type to the Sink Writer object so it can

configure its output stream. Strictly speaking this is not part of the creation and

population of the Media Type but it is nice to see how the Media Type is used once it

has been built.

CLONING A MEDIA TYPE

Cloning a Media Type is a pretty straight forward process, just create it and copy the

items over. The code section below documents this so that you have it for future

reference.

public static IMFMediaType CloneMediaType(IMFMediaType inType)

{

 IMFMediaType outType = null;

 HResult hr;

 if (inType != null)

 {

 hr = MFExtern.MFCreateMediaType(out outType);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MFCreateMediaType failed. Err=" + hr.ToString());

 }

 hr = inType.CopyAllItems(outType);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to CopyAllItems failed. Err=" + hr.ToString());

 }

 }

 return outType;

}}

Source: TantaCommon::TantaWMFUtils::CloneMediaType

Basically because the IMFMediaType interface inherits directly from IMFAttributes you

can just call the CopyAllItems() function to clone the data in the source Media Type

over to the destination Media Type.

ENUMERATING THE ATTRIBUTES OF A MEDIA TYPE

If you have a Media Type object (perhaps obtained directly from a Media Stream) it

might be useful to look at the Attributes it contains. This is called “enumerating” the

The WMF Components

94

Attributes and is discussed in detail in the Enumerating Attributes section of the

MF.Net Programming Fundamentals chapter.

We will leave the in-depth discussion of the enumeration process to that chapter,

however, to set the stage, it is interesting to outline what you would need to do. Here is

the basic process…

1. You have a Media Type which contains an unknown number of

Attributes.

2. You find the number of Attributes in the Media Type using the

GetCount() call of the IMFAttributes interface.

3. You sit in a for loop and obtain each Attribute in turn with a

GetItemByIndex() call this gives you the key (always a GUID)

and an object called a PropVariant which can store multiple data

types.

4. You see if the key is the one you are interested in

(MF_MT_MAJOR_TYPE, MF_MT_SUBTYPE, MF_MT_FRAME_SIZE or

many others etc.). If it is, you can obtain the value from the

PropVariant. This can be one of many data types and the

PropVariant contains a number of access functions to get you the

data in the correct type. You have to know the type to get. For

example, if you are looking for the target bit rate and the key is

MF_MT_AVG_BITRATE then you must use the GetUInt() function

on the PropVariant. If the key represented a string, you would

have to use the GetString(). PropVariants are discussed in

detail in the PropVariant section of the MF.Net Programming

Fundamentals chapter. It should be noted that the behavior of

PropVariants in MF.Net is different than the behavior of

PropVariants in C++ and if you are a C++ programmer you should

read that section very carefully.

Attributes are designed to store data of a varying quantity and type and they do that

very well. However the downside is if you are retrieving information from them you

have to know exactly what you are looking for (the key) and the format in which it will

be present (the storage type in the PropVariant).

FOURCC CODES

There are a variety of digital video and audio formats with wildly differing names and

capabilities. So it is only natural that somebody would try to make sense of all the chaos

 The WMF Components

 95

and define a consistent set of acronyms by which any particular codec or compression

standard might be known. Thus the concept of the FOURCC code was developed.

FOURCC means “four character code” and it is an identifier for a specific digital Media

Format. You will probably already have seen some of these without realizing the

significance of the four digits in the acronym. For example, some common video format

examples are YUY2, UYVY and NV12 - but there are many more. Each four letter code

specifies a distinct encoding method for the media data and each encoding method will

have its own four digit code.

As you might expect, each FOURCC code will be treated internally inside Windows

Media Foundation as a distinct Media Sub-Type and that subtype will be represented by

a unique GUID. In order to make things simple, an algorithm was defined so that if you

have the FOURCC code then you know the GUID for the subtype and vice-versa. The

algorithm is simple, just convert the FOURCC code to hexadecimal, reverse the order

and append a standard, known sequence of hexadecimal numbers (”-0000-0010-

8000-00AA00389B71”) to complete the GUID. Thus in Windows Media Foundation,

every Media Sub-Type will be in the format XXXXXXXX-0000-0010-8000-00AA00389B71

where XXXXXXXX is the hexadecimal values of the FOURCC code in reverse order. As an

example for the YUY2 codec, the hexadecimal value of “Y” = 0x59, “U” = 0x55, and “2” =

0x32, so “YUY2” in reverse order is “2YUY” and the hexadecimal equivalent of that string

would be 0x32595559. Thus, the Media Type GUID for the YUY2 format is always

32595559-0000-0010-8000-00AA00389B71.

The MF.Net library contains a class named FourCC which enables the FOURCC code

information to be stored and the equivalent Media Sub-Type GUID for it to be

automatically generated. So, if you see a section of code that looks like the one below,

then you should now be able to understand exactly what it is doing.

FourCC FOURCC_YUY2 = new FourCC('Y', 'U', 'Y', '2');

FourCC FOURCC_UYVY = new FourCC('U', 'Y', 'V', 'Y');

FourCC FOURCC_NV12 = new FourCC('N', 'V', '1', '2');

Guid[] m_MediaSubtypes m_MediaSubtypes = new Guid[] {

 FOURCC_NV12.ToMediaSubtype(),

 FOURCC_YUY2.ToMediaSubtype(),

 FOURCC_UYVY.ToMediaSubtype() };

Source: TantaTransformDirect::MFTTantaGrayscale_Sync

TOPOLOGIES

Previous chapters and sections (The Pipeline Architecture, The Pipeline) discussed how

Windows Media Foundation uses the Pipeline to transfer media data from the Media

Sources to the Media Sinks. It was also mentioned that things can get quite complex and

it is possible to have a Pipeline with multiple Media Sources, multiple Media Sinks and

The WMF Components

96

complex things like splits (Tee’s) and joins in multiple branches. Just about the only

mechanism that is not possible (or at least not supported) are loops in the branches.

Clearly Pipelines are a powerful processing tool for media data. In addition, as if that

were not enough, the Media Session will automatically manage the data flow through

the Pipeline and will use a concept called a Presentation to implement throttling and

synchronization amongst the branches if necessary. Basically all you, as the

programmer, need to do is configure a Pipeline and set it running. After that, an

enormous number of extremely complex operations happen in the background and the

amount of code you have to write is minimal.

So, how does one configure a Pipeline? Well, one creates a map (essentially a blueprint)

containing all of the Media Sources, Media Sinks and other components in the branches

of the Pipeline. This map also identifies how the components are connected together.

The name for this map is called a Topology and the objects in it are represented by

Topology Nodes. There is one Topology Node for each component in the Pipeline.

Furthermore, the Topology Nodes (which are themselves WMF objects) can easily be

connected in ways which model the branches of the Topology. Once the Topology has

been configured, passing the Topology object as a parameter on a call to the

SetTopology() function of the Media Session will generate the Pipeline. This is called

“resolving” the Topology.

A Topology is a Windows Media Foundation object and it is easily created using a static

function call. The code section below shows the process.

hr = MFExtern.MFCreateTopology(out pTopology);

It worth explicitly noting at this point that “creating” the Topology object is not the

same thing as “resolving” the Topology. When you create a Topology you just get an

empty IMFTopology object, once you populate it, the Media Session can use it (“resolve

it”) and make a Pipeline out of it.

Figure 5.2: A Sample Topology with Two Branches

Video Source

Node

User Video

Transform Node

File Sink

Node
Audio Source

Node

 The WMF Components

 97

The image in Figure 5.2 above shows a representation of a Topology with two branches.

You will sometimes hear a Topology referred to as a “graph” although that is a

DirectShow term which occasionally carries over into WMF. Each Topology Node

represents an object. Each arrow represents a stream of data and, even though each

stream starts on its own Media Source we would say that there are two branches in the

Topology. In this case each branch consists of a stream of one of two Media Major Types

(video or audio). It should be noted that this does not always have to be the case – the

Topology could be mixing two streams of the same type. Both branches in the Topology

terminate on the same node. In this example the File Sink Node is probably something

like the MP4 File Sink which writes both audio and video to the file. The User Video

Transform Node is present through choice. The user specifically configured it into the

Topology in order to perform some function.

The Topology Nodes and their relationship with the

components and each other are the essential part of the

Topology. The Topology object itself is mostly just a

container for the Topology Nodes.

In order to get an additional perspective on what is going on, let’s think about the things

a Topology Node might need to be configured with in order for the Media Session to set

up a Pipeline.

One of the first things a Topology Node will need to know is whether the node is

originating data (called a source node), rendering data (called a sink node) or

transforming data (called a Transform Node). As you might imagine, the way the Media

Session will interact with each type of node is quite different and so it needs to know

what sort of object it is dealing with. When you create a Topology Node you will always

be required to tell it the node type. The node type is always one of four

MFTopologyType enum values (OutputNode, SourcestreamNode, TransformNode or

TeeNode). It should be noted that the name “MFTopologyType” is a bit unfortunate

since the name implies that it represents a type of Topology (it doesn’t - there is no such

concept) rather than a type of Topology Node. A name like MFTopologyNodeType for

the enum would have been more descriptive – but it is what it is.

Another thing a Topology Node is going to need to know is the underlying WMF object

which will be in the Pipeline at that point. Remember how previously it was said that

Windows Media Foundation is based on COM. This means that a most of the ways you

“tell” a Topology Node about the underlying object are the COM ways of doing this.

Let’s run through the options.

The WMF Components

98

1. You can just give the Topology Node the instantiated object. This

is easily done for the user written Transform objects (see the

TantaTransformDirect Sample Project). This action is performed

by the calling the SetObject() function of the

IMFTopologyNode interface and is only useable on Transform or

Output nodes. It should be noted that, for things like Media

Sources and Media Sinks, you mostly do not ever have the

instantiated object itself before you resolve the Topology.

2. A Topology node can accept a GUID value which will allow it to

use COM to create the object. This is typical for most of the

standard Microsoft supplied WMF objects such as the various

Media Sub-Type modification or encoding/decoding Transforms

since the GUID values for these are well known and documented.

You can also create your own GUID and Transform and the

Topology Node will cheerfully use that as long as it can find the

object in the Registry and use COM to build it. The

TantaTransformInDLL and the TantaTransformInDLLClient

Sample Project pair demonstrate this process. The actual

procedure for setting the GUID is performed by calling the

SetGuid() function on the IMFAttributes interface of the

Topology Node. Like the IMFMediaType interface, the

IMFTopologyNode interface directly inherits from

IMFAttributes. Calling SetGuid() with the known key of

MF_TOPONODE_TRANSFORM_OBJECTID and the GUID of the

Transform as a value will enable the Topology Node to create the

object when the Topology is resolved.

3. A Topology Node can also accept an object called an Activator.

An Activator is a COM object that knows how to create the

object. You could, theoretically, use COM and the Activator

yourself to create your Pipeline Object and then hand it in to the

Topology Node directly. However, just giving the Topology Node

the Activator is far easier to do and is a lot less trouble. Typically,

you obtain an Activator from a static WMF function call. For

example, the common way of creating an Enhanced Video

Renderer (which is a Media Sink) is by using a call to the WMF

function MFCreateVideoRendererActivate() which returns an

Activator to you. You then give this Activator to the Topology

node by the calling the SetObject() function of the

 The WMF Components

 99

IMFTopologyNode interface and, it should be noted, that

Activators are only useable on Transform or Output nodes.

4. When configuring Source Topology Nodes you have to provide

the node with the Media Source object, Presentation Descriptor

and Stream Descriptor. This is done by setting those objects as

Attributes via a SetUnknown() call on the IMFAttributes

interface on the Topology Node. The Creating a Topology Node

for a Media Source section below demonstrates this process

using the MF_TOPONODE_SOURCE,

MF_TOPONODE_PRESENTATION_DESCRIPTOR and

MF_TOPONODE_STREAM_DESCRIPTOR GUIDs.

5. In the case of output nodes a Stream Sink object can be supplied

to the Topology Node. You can get a Stream Sink object by asking

the Input Media Stream on the Media Sink for it with a call to the

GetStreamSinkByIndex() function. You can give this object to

the node by calling the SetObject() function of the

IMFTopologyNode interface. The Creating a Topology Node for

a Media Sink Using a Stream Sink section below discusses this

process in some detail.

So, in summary, the creation methods of a Topology Node, and the items you need to

use to populate it, vary widely depending on the type of Topology Node you are creating

(source, sink, transform or tee). Some types of Topology Node can use the same

creation and population techniques and some cannot. Mostly, they all have multiple

ways of obtaining the same result. You just have to understand what is required, look at

some example code, and do it that way. Things will go much easier for you if you do not

expect any consistency.

Another thing a Topology Node is going to need to know is how it is connected to the

other nodes. This is fairly straightforward. The Topology Node implements the

IMFTopologyNode interface and that interface contains (among many other things) a

ConnectOutput() function call. Once you have all of your Transform Nodes built, you

just start at the source and connect them up node-by-node for each branch. Here is a

simple example of a source node connecting directly to an output node.

// Connect the output stream from the source node to the input stream of the output

// node. The parameters are:

// dwOutputIndex - Zero-based index of the output stream on this node.

// *pDownstreamNode - Pointer to the IMFTopologyNode interface of the node to connect to.

// dwInputIndexOnDownstreamNode - Zero-based index of the input stream on the other node.

hr = sourceAudioNode.ConnectOutput(0, outputSinkNode, 0);

if (hr != HResult.S_OK)

{

 throw new Exception("call to pSourceNode.ConnectOutput failed. Err=" + hr.ToString());

The WMF Components

100

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::PrepareSessionAndTopology

Note that in the above ConnectOutput() function call that there is an output stream

index and an input stream index. In order to incorporate the concept of Tee nodes,

there has to be a way to connect two output streams on the Tee to separate input

streams on other nodes. In other words, in order to form a split in the Topology, output

stream 0 might be configured to connect to input stream 0 on one node and output

stream 1 might connect to input stream 0 on another. These stream index values are

only relevant to Topology Nodes and are distinct from the Stream Descriptor ID you

earlier used when setting up the streams on a Media Source.

It should also be noted that the Topology provides quite a versatile mechanism to

describe a branched network. There are many other connection options available on the

IMFTopologyNode interface besides the ConnectOutput() function call. We will not

discuss these here because it would divert us into some very advanced topics. The

documentation is readily available online should you ever feel the need to make some

innovative connections.

TOPOLOGIES AND MEDIA SUB-TYPES

In the above discussion of Topologies, we have kind of glossed over the treatment of the

Media Sub-Types used to represent the data as it flows through the Pipeline. Recall (see

the Media Streams and the Presentation section) that a specific Media Type is selected

(made current) when the output stream of a Media Source is chosen. This is the format

in which the data will appear. Similarly, the input stream of a file sink is also configured

with a Media Type. In addition, in certain types of Media Sink such as those that write

files to disk the ultimate output of the Media Sink is also configurable with a Media

Type.

The Media Types used in each node of a Pipeline branch do not need to be identical. The

Media Sub-Type representation can change at each stage and this must be considered

when you configure your Topology. The image below shows a Topology in the process of

being configured and the input and output Sub-Type information at each stage.

Figure 5.3: A Topology with Mis-Matched Media Sub-Types

Video Source

Node

Video

Renderer

Node

RGB

(800x600)

YUV

(640x480)

 The WMF Components

 101

In the above diagram in Figure 5.3 we can see that the video source is configured with

an output Media Sub-Type of RGB and a frame size of 800x600. The Video Renderer (a

Media Sink) has its input stream configured to accept YUV and a frame size of 640x480.

There are a number of ways to fix this – let’s make a list

1. You, as the programmer, could choose to use a compatible

Media Sub-Type and format from the Video Source. In other

words if YUV (640x480) is available on the Media Source you

could simply make that Video Type current in the Stream

Descriptor and then the output of the Media Source will match

the input Media Type on the Media Sink.

2. Alternatively, you could change the Media Type used to

configure the input stream on the Media Sink to match that of

the Media Source. As with the Media Source, this may or may

not be configurable.

3. A sort of negotiation is also possible. Your application can go

back and forth between the available Media Types on offer in

the Media Source and Media Sink and find a good compromise

that they both support.

4. You could insert a conversion transform in the branch between

the Media Source and Media Sink. This does not necessarily have

to be a custom Transform written by yourself – Microsoft supply

a number of Transforms, as standard, which can be used to

perform such tasks. A web search on “Windows Media

Foundation Color Converter DSP” should take you to the

appropriate place in the documentation.

Figure 5.4: A Topology with a Conversion Transform

The above diagram shows the Topology with a Conversion Transform in place. This

Transform would be inserted into the Topology in the normal way. A Transform Node

would be created and the GUID of the Conversion Transform (in this example

CLSID_CColorConvertDMO) would be supplied to it. When the Topology is resolved the

Conversion Transform will be created and added to the Pipeline.

Video Source

Node

Video Renderer

Node

RGB

(800x600)

YUV

(640x480) Conversion

Transform Node

The WMF Components

102

It should be noted that many Transforms can accept a variety of input Media Types and

output Media Types. You, as the programmer, do not specifically choose these Media

Types on the Transform like you do with the Media Sources and Media Sinks. Instead,

when the Topology is resolved, the list of acceptable inputs or outputs is matched to the

Media Type currently on the branch at that point. If there are two Transforms in

sequence in the Topology the output Media Type of the first one is just matched to the

input Media Type of the next until something that works is found. Since most Media

Sub-Types are pretty standard this is not as complicated as it seems.

Also, be aware that all of this Media Type negotiation only happens on Transforms. The

Topology will never change the Media Type you set the source stream to output or the

Media Types you have configured on the Media Sink.

PARTIAL TOPOLOGIES

If you have been following along in the above discussion, you are now probably well

aware that there is a considerable scope for negotiation on the input and output Media

Types of the components that make up the Pipeline. In addition, it is up to the

application to find the appropriate Transforms and add them to the Topology branch in

order to get everything to work.

Does the application always have to do all this work to figure out how to match the

Media Types when it sets up a branch in the Topology? In some circumstances the

answer is no – it is sometimes possible to automate the addition of the conversion

Transforms to the Pipeline.

If you are implementing a Pipeline in a media playback

type application (i.e. you are using a renderer style sink)

then it is possible to have Transforms automatically added

to the Topology when the Topology is resolved.

It should be emphasized that this “auto configuration” does not work on non-playback

applications. In other words, if you are writing to something like a file sink you will have

to fully configure the Topology.

The component that performs this automatic resolution is called the Topology Loader. It

was thought that the most common applications of Windows Media Foundation would

be for the playing of media information and the Topology Loader was introduced in

order to automate the construction of Pipelines in that situation. Apparently Microsoft

decided that rather than have various 3rd party applications perform their own

 The WMF Components

 103

negotiations in a buggy and indeterminate kind of way they would rather design

something that can take the various bits of the Topology and figure it all out

automatically. One presumes that they thought applications that wrote to files would

need to have much stricter controls on the content format as it passed through the

Pipeline and so did not enable the Topology Loader on such Pipelines.

A Topology in which the Media Sub-Types and formats of

the components in the various branches are inconsistent is

called a Partial Topology. In other words, a Partial

Topology is just a normal Topology (in a playback

situation) which may or may not need to have Transforms

automatically inserted in it to make the Pipeline work.

The automatic resolution of the Topology seems like a fine and wonderful thing – but as

you might imagine there are drawbacks. If the Topology loader is busy inserting

Transforms into a branch on your behalf, you will never really quite know what the

Pipeline looks like. In effect, the Pipeline becomes a kind of black box into which you put

data at one end and receive it in a different format at the other.

In addition, the Topology Loader digs about in the Registry to find the Transforms it

needs. It does not take any particular care to use only the Microsoft supplied ones and

so any third party Transform which is registered might be used. This can introduce odd

behaviors into the application and also the Pipeline that is built may well be different

from machine to machine or operating system version. When writing your own

Transforms you should take care not to leave them in the Registry (unless that is the

intent) in case they get picked up and used by the Topology Loader.

It should be noted that the Topology Loader is enabled by default. If you are building a

Topology in a playback situation and you call the SetTopology() on the Media Session,

the Topology Loader will be invoked. You can turn the Topology Loader off if you wish so

that the application is forced to fully specify the Topology and the nodes it contains. You

can also write your own Topology Loader if you feel you can do a better job than the

WMF default one – but that is a topic way more advanced than this book is prepared to

discuss.

The connection of the nodes in a Partial Topology is performed in exactly the same way

as for a fully specified Topology. You simply call ConnectOutput() on the upstream

node to connect it to the next node in the sequence. What you do not do, in a Partial

Topology, is take any particular care to make sure that the two nodes represent

components whose streams use identical Media Types. The Topology Loader will break

The WMF Components

104

the connections and insert a Transform (or Transforms) in order to make that branch of

the Pipeline work.

It probably isn’t obvious from the above discussion but the Media Types, Sub-Types and

formats any one Transform is prepared to accept on its input or produce on its output

are essentially “hard-coded” into the Transform. This makes sense if you think about it –

the Transform is intimately involved with the processing of the data that passes

through. It has to know how to deal with that data on a very fundamental and basic

level. This means that the each Media Sub-Type it can support must necessarily be

backed up by some very dedicated code. There can, of course, be more than one Media

Sub-Type (and frame size etc.) on an input or output but all of these are specifically

declared as supported. The Transform cannot just “figure it out” if it gets an unknown

Media Type.

There are other situations in which Transforms may be automatically invoked. Recall

that it was earlier mentioned that some Media Sinks (such as a file sinks) can have a

different Media Type on their input than that which is actually written to the disk? Well,

if the Media Types are different, then something has to do the conversion. The Media

Sink will, in a way which is completely transparent to you, find and use a Conversion

Transform. Similarly a Sink Writer (even though it is not part of a Pipeline) will find a use

a Conversion Transform for the same purpose.

CREATING A TOPOLOGY NODE FOR A MEDIA SOURCE

The following code block demonstrates how to create a Topology Node from a Media

Source. Note that the creation process also requires a Presentation Descriptor and a

Stream Descriptor. Both of these components are also obtained from the same Media

Source – but since they are usually also used elsewhere they are passed in to this

function. See the PrepareSessionAndTopology function in the frmMain class of the

TantaAudioFileCopyViaPipelineMP3Sink Sample Project for details.

/// +=

/// <summary>

/// Create a topology node for a source stream. The source node must contain

/// pointers to the media source, the presentation descriptor, and the

/// stream descriptor. This code is just an ecapsulated way of doing

/// that. It looks way more complicated than it is.

/// </summary>

/// <param name="pSource">the media source</param>

/// <param name="sourcePresentationDescriptor">the source presentation descriptor</param>

/// <param name="streamDescriptor">the source stream descriptor</param>

/// <returns>the source stream node</returns>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

public static IMFTopologyNode CreateSourceNodeForStream(IMFMediaSource pSource,

 IMFPresentationDescriptor

 sourcePresentationDescriptor,

 IMFStreamDescriptor streamDescriptor)

{

 The WMF Components

 105

 HResult hr;

 IMFTopologyNode outSourceNode = null;

 if (pSource == null)

 {

 throw new Exception("No media source object provided");

 }

 if (sourcePresentationDescriptor == null)

 {

 throw new Exception("No source presentation descriptor provided");

 }

 if (streamDescriptor == null)

 {

 throw new Exception("No source stream descriptor provided");

 }

 try

 {

 // A source node represents one stream from a media source. The source

 // node must contain pointers to the media source, the presentation

 // descriptor, and the stream descriptor. This code is just an ecapsulated

 // way of doing that.

 // Create the empty structure of the source-stream node.

 hr = MFExtern.MFCreateTopologyNode(MFTopologyType.SourcestreamNode, out outSourceNode);

 if (hr != HResult.S_OK)

 {

 throw new Exception("GetStreamDescriptorByIndex failed. Err=" + hr.ToString());

 }

 if (outSourceNode == null)

 {

 throw new Exception("outSourceNode == null");

 }

 // Set attribute: Pointer to the media source.

 hr = outSourceNode.SetUnknown(MFAttributesClsid.MF_TOPONODE_SOURCE, pSource);

 if (hr != HResult.S_OK)

 {

 throw new Exception("Set MF_TOPONODE_SOURCE failed. Err=" + hr.ToString());

 }

 // Set attribute: Pointer to the presentation descriptor.

 hr = outSourceNode.SetUnknown(

 MFAttributesClsid.MF_TOPONODE_PRESENTATION_DESCRIPTOR,

 sourcePresentationDescriptor);

 if (hr != HResult.S_OK)

 {

 throw new Exception("MF_TOPONODE_PRESENTATION_DESCRIPTOR. Err=" + hr.ToString());

 }

 // Set attribute: Pointer to the stream descriptor.

 hr = outSourceNode.SetUnknown(MFAttributesClsid.MF_TOPONODE_STREAM_DESCRIPTOR,

 streamDescriptor);

 if (hr != HResult.S_OK)

 {

 throw new Exception("MF_TOPONODE_STREAM_DESCRIPTOR failed. Err=" + hr.ToString());

 }

 // Return the IMFTopologyNode pointer to the caller.

 return outSourceNode;

 }

 catch

 {

 // If we failed, release the pnode

 if (outSourceNode != null)

 {

 Marshal.ReleaseComObject(outSourceNode);

 }

 outSourceNode = null;

 throw;

 }

}

Source: TantaCommon::TantaWMFUtils::CreateSourceNodeForStream

For consistency you might expect to just be able to pass in the Media Source with a

SetObject() call like one does for Transforms and the Media Session could figure it out

The WMF Components

106

for itself. However this is not possible (and the documentation does say so). This is

logical if you think about it – there is only one Presentation in a Media Source but there

can be any number of Media Streams in a Presentation. The Media Session would not

know which Media Stream is to be associated with that Topology Node when the time

comes to resolve it.

CREATING A TOPOLOGY NODE FOR A MEDIA SINK USING A STREAM SINK

The code section below demonstrates how to create a Topology Sink Node from a

Media Sink. Recall that a Media Sink can have multiple inputs (a file sink writing audio

and video to the same file). For this reason, the Topology Node requires the index of the

Media Stream on the Media Sink. This stream must be previously configured before the

Topology Node is created. See the OpenMediaFileSink function in the frmMain class of

the TantaAudioFileCopyViaPipelineMP3Sink Sample Project for details.

/// +=

/// <summary>

/// Create a topology node for a sink stream. The sink node must contain

/// pointers to the media sink and the stream it is using. This code is just

/// an ecapsulated way of doing that.

/// </summary>

/// <param name="pSink">the media sink</param>

/// <param name="streamIndex">the stream index</param>

/// <returns>the sink stream node</returns>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

public static IMFTopologyNode CreateSinkNodeForStream(IMFMediaSink pSink, int streamIndex)

{

 HResult hr;

 IMFTopologyNode outSinkNode = null;

 IMFStreamSink pStream = null;

 if (pSink == null)

 {

 throw new Exception("CreateSinkNodeForStream No media sink object provided");

 }

 try

 {

 // A sink node represents one stream from a media sink. The sink node must

 // to the media sink and the stream it is using.

 // Create the empty structure of the sink-stream node.

 hr = MFExtern.MFCreateTopologyNode(MFTopologyType.OutputNode, out outSinkNode);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MFCreateTopologyNode failed. Err=" + hr.ToString());

 }

 if (outSinkNode == null)

 {

 throw new Exception("call to MFCreateTopologyNode failed. outSinkNode == null");

 }

 // get the StreamSink

 hr = pSink.GetStreamSinkByIndex(streamIndex, out pStream);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to GetStreamSinkByIndex failed. Err=" + hr.ToString());

 }

 if (pStream == null)

 {

 throw new Exception("call to GetStreamSinkByIndex failed. pStream == null");

 }

 The WMF Components

 107

 // Set the object pointer to the media stream sink

 hr = outSinkNode.SetObject(pStream);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to SetObject on node failed. Err=" + hr.ToString());

 }

 // Return the IMFTopologyNode pointer to the caller.

 return outSinkNode;

 }

 catch

 {

 // If we failed, release the pnode

 if (outSinkNode != null)

 {

 Marshal.ReleaseComObject(outSinkNode);

 }

 outSinkNode = null;

 throw;

 }

}

Source: TantaCommon::TantaWMFUtils::CreateSinkNodeForStream

In the above code a Stream Sink object (an IMFStreamSink interface) is obtained from

the Media Sink. The SetObject() call is used on the Topology Node. When the

Topology is resolved, the Media Session will notice that the node is an output node, the

contained object is an IMFStreamSink and it will deal with it appropriately. In particular,

note how the Stream Sink knows about the Media Stream on the Media Sink that it

represents.

CREATING A TOPOLOGY NODE FOR A MEDIA SINK USING AN ACTIVATOR

The code below will demonstrate the process of creating an output Topology Node

using an Activator. The Activator is obtained via a call to a static WMF function. The

code below, clipped from the TantaWMFUtils sample code, is written to handle the

creation of a Topology Node for an Enhanced Video Renderer (EVR). There is a similar

version for the Streaming Audio Renderer (SAR).

/// +=

/// <summary>

/// Create a topology node for EVR Video Renderer sink. The caller must

/// release the returned node.

/// </summary>

/// <param name="videoWindowHandle">the handle to the window

/// on which video streams will display</param>

/// <returns>the ouput stream node</returns>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

public static IMFTopologyNode CreateEVRRendererOutputNodeForStream(IntPtr videoWindowHandle)

{

 HResult hr;

 IMFTopologyNode outputNode = null;

 IMFActivate pRendererActivate = null;

 try

 {

 // Create a downstream node.

 hr = MFExtern.MFCreateTopologyNode(MFTopologyType.OutputNode, out outputNode);

 if (hr != HResult.S_OK)

 {

 throw new Exception("MFCreateTopologyNode failed. Err=" + hr.ToString());

 }

 if (outputNode == null)

 {

The WMF Components

108

 throw new Exception("outputNode == null");

 }

 // There are two ways to initialize an output node

 // 1) From a pointer to the stream sink.

 // 2) From a pointer to an activation object for the media sink.

 // since we do not have a stream sink at this point we are going to go the

 // activation object route. This is what we are doing below.

 // Create an activation object for the enhanced video renderer (EVR) media sink.

 hr = MFExtern.MFCreateVideoRendererActivate(videoWindowHandle, out pRendererActivate);

 if (hr != HResult.S_OK)

 {

 throw new Exception("MFCreateVideoRendererActivate failed. Err=" + hr.ToString());

 }

 if (pRendererActivate == null)

 {

 throw new Exception("pRendererActivate == null");

 }

 // Set the IActivate object on the output node. Note that not all node types use

 // this object. On transform nodes this is IMFTransform or IMFActivate interface

 // and on output nodes it is a IMFStreamSink or IMFActivate interface. Not used

 // on source or tee nodes.

 hr = outputNode.SetObject(pRendererActivate);

 // Return the IMFTopologyNode pointer to the caller.

 return outputNode;

 }

 catch

 {

 // If we failed, release the pNode

 if (outputNode != null)

 {

 Marshal.ReleaseComObject(outputNode);

 }

 throw;

 }

 finally

 {

 // Clean up.

 if (pRendererActivate != null)

 {

 Marshal.ReleaseComObject(pRendererActivate);

 }

 }

}

Source: TantaCommon::TantaWMFUtils::CreateEVRRendererOutputNodeForStream

Note that renderer objects typically only have one primary input stream so the stream

id is simply assumed by the Topology Node. This is yet another inconsistency you need

to be aware of when creating output Topology Nodes. It should be noted that the

Enhanced Video Renderer (EVR) has the capability to accept multiple secondary Media

Streams and things like overlays and Window-In-Window are possible. However, these

are advanced concepts and they will not be discussed in this book. In addition, the EVR

renderer is able to handle most of the common input Media Sub-Types and formats so

their specification at creation time is not terribly relevant. Of course, since this is a

playback situation, the Topology Loader may well automatically add additional

Transforms to the Pipeline in order to make things work.

It should be noted that if you use an Activator to create the Media Sink you do not,

when creating the Topology Node, get the actual renderer object returned to you. You

may need this component later on (for the EVR in particular) in order to adjust things

like the screen aspect ratio or to get a static snapshot of the display. There are two basic

 The WMF Components

 109

ways to obtain this object – both are only available to you after the Topology has been

resolved. You can use the general technique described in the Getting The WMF Object

From a Topology Node section below to directly obtain the object backing up the

Topology Node. However, this has complications with the EVR. Alternately, in the case

of the Enhanced Video Renderer, you can dig it out of the Media Session using the static

MFGetService call with the MR_VIDEO_RENDER_SERVICE GUID value. See the Getting an

Interface from an Interface section in the MF.Net Programming Fundamentals chapter

for more information on this.

GETTING THE WMF OBJECT FROM A TOPOLOGY NODE

When a Windows Media Foundation object (of any type) is added to a Pipeline, a

Topology Node is always created for it. There are a variety of ways of indirectly creating

the object (for example you have a GUID or an Activator) and so your code may not

have ever have handled the actual instantiated object. If you have access to the node

(perhaps you saved a reference during the creation process), the Topology Node itself

provides a way to access the underlying WMF object in the Pipeline.

This technique is used in the Information Exchange Via Attributes section of the

Working With Transforms chapter to get the Transform object belonging to a Topology

Node. Since the method of getting an instantiated Transform object from a Topology

node was not the main focus of that discussion - it may well be missed. The code section

below will detail the general procedure for reference purposes.

public static object GetObjectFromTopologyNode(IMFTopologyNode topoNode)

{

 HResult hr;

 object nodeObject;

 if (topoNode == null) return null;

 // get the object from the node

 hr = topoNode.GetObject(out nodeObject);

 if (hr != HResult.S_OK) return null;

 return nodeObject;

 }

Source: TantaCommon::TantaWMFUtils::GetObjectFromTopologyNode

The line to note is hr = topoNode.GetObject(out transformObject). If you have

the Topology Node then, assuming the Topology has been resolved, you can always get

the underlying WMF object that node represents. Note that in the above code section,

the component is initially returned as an object and it should be subsequently tested to

see if it actually implements the required interface before it is used.

The WMF Components

110

TRANSFORMS

The previous section in this chapter discussed Transforms in the context of the Topology

and Pipeline. This section will provide a more in-depth perspective on Transforms. In

order to provide sufficient background to make the concepts understandable, there will

be a bit of repetition of the some of the previous topics. The Working With Transforms

chapter towards the end of this book offers a more comprehensive discussion of the

process of creating your own Transforms.

The Pipeline (managed by the Media Session) transports one or more streams of data

from Media Sources to Media Sinks. In between the Media Source and the Media Sink

for each stream, there can be one or more binary objects which process the data as it

moves through the Pipeline. These objects may be decoders, encoders, multiplexers,

effect processors or a multitude of other types. Any object which processes the data in

the stream, and which is not a Media Source or Media Sink, is known as a Windows

Media Foundation Transform (MFT). There are many different categories of Transform

and, on any one system, there can be multiple Transforms fulfilling the same function.

You may also hear Transforms referred to as Codecs if they are intended for

encoding/decoding (compressing/decompressing) a stream of data or as a Digital Signal

Processor (DSP) if they are related to converting the stream of data into a different

format. In all cases, within Windows Media Foundation, Codecs and DSP’s are

Transforms and they will all implement the IMFTransform interface.

Most WMF playback applications do not know or care about Transforms – they simply

want an end result. In recognition of this, Microsoft has made it possible for playback

operations to automatically build a working Topology using a clever bit of code called

the Topology Loader. Essentially this means a Topology is created, the Media Source,

Media Sink and desired Transforms are added in to it and then the Topology Loader

automatically connects them all up when a SetTopology() call is made on the Media

Session. The collection of incompletely connected Media Sources, Sinks and Transforms

is called a Partial Topology. If the Transforms supplied in a Partial Topology are unable

to connect to each other because of mismatched input and output Media Types, the

Topology Loader may well add in other Transforms in order to make the connections

work. Note that the automatic resolution of a Topology is only available for playback

operations – file encoding and other types of Pipelines will not automatically add

Transforms to a Partial Topology in order to resolve it.

In playback situations this means that most of the time the Media Session, when given a

Media Source and a Media Sink, will automatically add to the Topology (and hence the

Pipeline) the Transforms it needs in order to get the whole process to work. As

 The WMF Components

 111

mentioned previously, when building a topology for situations other than playback, you

will have to fully specify each source, sink and transform and connect them up to each

other. In general, applications which must specify a Full Topology tend to ship with a

complete set of their own Transforms with the occasional addition of a standard

Microsoft supplied one.

The automatic resolution process can be very dynamic and the Topology that results

from such an operation can be highly dependent on the configuration of that particular

machine and the Transforms available on it. For example, take the case where a Media

Source is providing a stream with encoded information. In that event, a decoder will

need to be added before the data can be used. If the decoder offers an output format

the Media Sink can accept then all is well – the Media Session will simply connect the

Source to the Decoder and the Decoder to the Sink and the Topology is complete.

However, it may happen that the only available decoder does not have an output

format that the Media Sink can accept and so one or more format conversion

Transforms will automatically be added to the Topology in order to provide a viable

Pipeline. The Topology Loader does not care if the Transform it uses is a third party

version installed by some other software vendor or if it is one of the Windows standard

ones. It just uses the first Transform it comes to that will match the criteria. This can

make for somewhat variable performance and reliability if different machines have

different collections (or versions) of Transforms.

ADDING TRANSFORMS TO A TOPOLOGY

Transforms, as discussed above, can be automatically added to a Topology in certain

situations. However they can also be explicitly specified and, as is typical with WMF,

there are a number of equivalent ways to do this. There is an extended discussion of

each of these methods in the Working With Transforms chapter and so only a summary

will be given below.

1. If you have the source code for the Transform you can include it

with the application source, compile it up, instantiate it with the

C# new operator and just give it to the topology as a binary via a

SetObject() call on a Transform Node.

2. If you have the Activator object for the Transform (perhaps

because you enumerated the available Transforms on the

system) you can simply give the Activator to the Topology by

creating a Transform Node and calling SetObject() with the

Activator object as a parameter.

The WMF Components

112

3. If you know the GUID of a Transform registered on your system

you can create a Transform Node for it and get that node to

instantiate it with a call to SetGUID()on the node.

4. If you know the GUID of a Transform registered on your system.

You can instantiate it yourself via COM with a call to

CoCreateInstance() and then give the object to the Topology

by creating a Transform Node and calling SetObject() with the

newly instantiated object as a parameter.

5. It is possible for Source Reader or Sink Writer objects, which do

not explicitly use a Media Session or Pipeline, to automatically

load a Transform if they happen to need that functionality. The

only Transforms available in such a situation are those

discoverable because they are registered and enumerable.

REGISTERING TRANSFORMS

As mentioned in the previous section, several methods of adding a Transform to a

Topology involve specifying a known GUID which makes it possible for an application to

find an available Transform and use it. This poses the interesting question: “How does

one register a Transform and make it available via a GUID”?

Transforms can be made available to an application in one of two modes – internally

inside the process or globally which means it is available to all applications on the

system. Both of these methods use the Registry. The internal process-specific method

simply records the registration in a temporary part of the Registry which is only visible

to that process and only present while the process is running.

The primary thing to realize is that a Transform which is to be made generally available

is a COM object, it is contained in in a DLL library and that DLL is recorded in the Registry

like any other C# COM object. Typically, this registration process requires the use of the

RegAsm tool. Registering the DLL for use with COM is enough to make it available to

Windows Media Foundation if the application knows the GUID beforehand. However,

COM registration alone is not enough to enable WMF to discover the Transform if it

does not know the GUID.

There are lots of COM objects on the system which have nothing to do with Windows

Media Foundation Transforms and so, if Transforms are to be discovered, a special area

of the registry must be set aside specifically for their listing and categorization. For the

discovery process to happen, the Transform must also be registered with a call to the

WMF functions MFTRegister or MFTRegisterLocal. Once the Registration is complete,

 The WMF Components

 113

the applications on the system will be able to see it when they enumerate the

Transforms available on the system.

There are several automated ways of registering a Transform and the Working With

Transforms section contains a detailed review of the options.

FINDING TRANSFORMS

The process of enumerating the available Transforms registered on a system is quite

straightforward and the Transforms are helpfully organized by category in order to

make the selection process easier. The MF.Net library contains a static MFTEnumEx()

function specifically for this purpose. The procedure for enumerating the Transforms on

a system is discussed in detail in the Working With Transforms section of this book and

the TantaTransformPicker sample application contains a full set of working code for

demonstration purposes.

SYNCHRONOUS AND ASYNCHRONOUS TRANSFORMS

When Windows Media Foundation was first introduced with Windows Vista, the only

type of Transform available was what is now known as the Synchronous Transform.

With the Synchronous model, the Media Session makes repeated calls to the

ProcessInput() and ProcessOutput() functions of the Transform. Of course there are

situations where more input is needed before more output can be provided and,

similarly, circumstances in in which no more input can be accepted until the output has

been taken. By and large, however, the information flows through the Transform in a

linear sequence and the Transform simply blocks while it is processing data. There is no

mechanism in a Synchronous Transform for the parallel processing of media data.

The Synchronous model works quite well. However, the developers of Windows Media

Foundation recognized that there are situations in which the parallel processing of the

Media Samples would be useful and introduced the concept of Asynchronous

Transforms with Windows 7.

With the Asynchronous model, it is possible to have multiple threads working on

different input data at the same time. The Media Samples to process and the threads

that work on them are controlled by an internal queue inside the Transform. It should

be recognized that, even though the various threads that are processing the data are

working in parallel, the output data must still be emitted in the correct order. This

means the output of some worker threads may have to block until others which are

processing earlier Media Samples are finished. As you might imagine, there is some

complexity in the scheduling all of this.

The WMF Components

114

In addition, while a Synchronous MFT can send and receive events, these events are all

in-band. In other words, the events are inserted into the data flow and are acted on as

the data is processed. Since the data processing in an Asynchronous Transform is

necessarily split between multiple threads, an event model like that could never work.

Thus an Asynchronous MFT implements an out of band event mechanism in which the

events are sent and received separately from the data. Since this event mechanism is

already present and functional, the Asynchronous Transform also uses it to request

more data or to tell the client that it has output ready. The communications between an

Asynchronous Transform and the client are much more intricate and more tightly

choreographed. It is often said that the Synchronous Transform uses a “push-pull”

model and the Asynchronous version is “event driven”.

The Asynchronous Transform is a very powerful concept and there is a base class in the

Tanta Library (TantaMFTBase_Async) greatly simplifies its implementation.

However, unless you need multiple threads, you will probably find the Synchronous

versions much easier to implement - even with the help of the base classes to factor out

most of the work. This book will not discuss Asynchronous Transforms in detail. It should

be noted here that there is also a base class in the Tanta Library for Synchronous Mode

Transforms (TantaMFTBase_Sync) which also greatly simplifies their implementation.

SAMPLES, FRAMES AND BUFFERS

The whole point of Windows Media Foundation is that data is transferred from a source

to a sink. To achieve this goal, the media data is sent as a continuous sequence of

“chunks” rather than all at once. This particular architectural decision nicely takes care

of live streaming applications and also reduces the resource requirements in situations

where all of the data could theoretically be delivered at once. The “chunk” of media

data is called a Media Sample. Note that the Media Sample is not the media data – it is a

container for another container (called a Media Buffer) which actually contains the

actual raw media data.

Unless you are writing your own Transforms it is unlikely

you will have to deal with the content of a Media Sample.

If you use the Reader-Writer or Hybrid Architectures you

may have to deal with Media Samples as a unit – but not

with their internal contents.

 The WMF Components

 115

The processing of Media Samples is slightly different depending on the WMF

architecture your application is using. If you are using the Pipeline model and have not

introduced any user written Transforms, the transmission and processing of the Media

Samples is performed entirely in the background. In such situations your application

never handles a Media Sample or its contents. With the Reader-Writer model you, as

the application coder, are responsible for taking the Media Sample from the Source

Reader and giving it to the Sink Writer component. In the Hybrid Architecture the Media

Samples are hidden in the Pipeline until they reach a special Sample Grabber Sink or

user written Transform at which time your application may need to process them in

order to pass them on to a Sink Writer.

THE RAW MEDIA DATA

Ultimately the raw media data is a sequence of ones and zeros and, in order for it to

make sense to anybody, it has to have a defined structure. The bit layout of this

structure is entirely determined by the Media Sub-Type of the data and adheres to a

strictly defined standard. These standards can get quite detailed. For example, one of

the simplest is video data stored in RGB32 format. This is basically a series of 32 bit

integers in which the least significant 8 bits stores the Red color intensity, the next 8 bits

stores the Green color intensity and the 8 bits after that store the Blue color intensity.

The final 8 bits are either not used or are used to represent a Transparency value in

some implementations. Other formats such as YUYV are designed to take human

perception into account and divide the color space up into one luminance (Y) and two

chrominance components (U and V). Essentially the Y represents the brightness and the

U and V represent the colors. This book will not discuss the details of these formats –

there is plenty of information available online.

Be aware that that if you manipulate the raw media data,

your code must necessarily be designed to interact with a

specific video format.

Specific examples of manipulations of this type can be seen in the

MFTTantaWriteText_Sync and MFTTantaVideoRotator_Sync example Transforms

implemented as part of the TantaTransformDirect Sample Project.

In MF.Net the raw video data will be located on the system heap. In other words it is not

located within the Managed Memory space of the .NET Common Language Runtime

(CLR) and thus your program cannot directly access it. At most you will get something

known as an IntPtr which is basically just a memory address. So how does your program

The WMF Components

116

get access to the raw media data? Well, there are two basic ways and two other ones

which are not really ways at all …

1. You can use Marshal.Copy() and copy the data at the IntPtr

location from the heap to managed memory. Of course you then

may have to copy it back again once you are done with it.

2. You can use “unsafe” code and manipulate the memory directly.

3. If your underlying data is contained in nice large sequences (for

example planes in NV12 format data) you can sometimes just

use the CopyMemory and FillMemory externs to deal with the

memory.

4. If you don’t want to make changes to the raw media data and

just want to give something else access to it, in some

circumstances you may not need to copy the data at all you can

just hand over the IntPtr value.

USING MARSHAL TO ACCESS RAW MEDIA DATA

Let’s be honest here. Yes, using Marshal is the recommended way of accessing the raw

media data in MF.Net, however it is slow. Probably you will find that the

Marshal.Copy() method too slow for applications which are processing large amounts

of data. In the Tanta Sample Projects the use of Marshal.Copy() is used to for simple,

one-off, things like getting a structure or other data on the WMF heap into managed

memory. The sample code section below is part of a routine which creates a bitmap

snapshot from the contents of the Enhanced Video Renderer display. You can find it in

the TantaFilePlaybackAdvanced Sample Project.

... more code

// get the image on the screen now. This will give us the image data and the

// bitmap info header. However, be aware that there are two headers associated

// with every .bmp file. The first is a file header (which we have to build

// ourselves) and the second is an info header which we are given in the call below.

// Also note that the memory for the bitmapData variable we receive here needs to be freed

hr = evrVideoDisplay.GetCurrentImage(workingBitmapInfoHeader, out bitmapData, out bitmapDataSize,

out bitmapTimestamp);

if (hr != HResult.S_OK)

{

 throw new Exception("buttonTakeSnapShot_Click failed. Err=" + hr.ToString());

}

// bitmapData is an IntPtr. Use Marshal to copy the video data out into a byte array

// bitmapDataSize is the length of bitmapData

byte[] managedArray = new byte[bitmapDataSize];

Marshal.Copy(bitmapData, managedArray, 0, bitmapDataSize);

... more code

Source: TantaCommon::ctlTantaEVRFilePlayer::buttonTakeSnapShot_Click

 The WMF Components

 117

The need to create a bitmap only occurs when the user triggers the operation with a

button press and so the process is not too time critical.

ACCESSING RAW MEDIA DATA WITH UNSAFE CODE

The word “unsafe” used in this context is a rather unfortunate term. In C# “unsafe”

simply means accessing “a block of memory not managed by the .NET runtime”.

Accessing memory in C# via “unsafe” pointers is exactly the same thing as doing regular

pointer access in C++. In other words, if you are careful (and you have to be careful in

C++ too), unsafe pointer access in C# is no more and no less dangerous than doing

regular pointer access in any other language. The upside is that it is much, much faster.

In order to use unsafe code your function must be decorated with the unsafe keyword

and you also have to check the “Allow unsafe code” option on the Build Tab of your

projects properties otherwise you will get a compile time error. The code section below

demonstrates how to do some pointer based math inside an “unsafe” C# function.

/// +=

/// <summary>

/// Copy a YUY2 formatted image to an output buffer while converting to grayscale.

/// </summary>

/// <param name="pDest">Pointer to the destination buffer.</param>

/// <param name="lDestStride">Stride of the destination buffer, in bytes.</param>

/// <param name="pSrc">Pointer to the source buffer.</param>

/// <param name="lSrcStride">Stride of the source buffer, in bytes.</param>

/// <param name="dwWidthInPixels">Frame width in pixels.</param>

/// <param name="dwHeightInPixels">Frame height, in pixels.</param>

/// <history>

/// 01 Nov 18 Cynic - Ported In

/// </history>

unsafe private void TransformImageOfTypeYUY2(

 IntPtr pDest,

 int lDestStride,

 IntPtr pSrc,

 int lSrcStride,

 int dwWidthInPixels,

 int dwHeightInPixels

)

{

 // This routine uses unsafe pointers for performance reasons.

 // If you don't know what unsafe pointers are then you

 // should look it up. Spoiler alert: they are not as

 // "unsafe" as the word would imply - unsafe is just a

 // specific c# technical term.

 // Remember the actual data is down in unmanaged memory

 // there does not seem to be an efficient "safe" way to copy

 // unmanaged memory to unmanaged memory without spooling it

 // through a temporary managed store - and this is slow.

 ushort* pSrc_Pixel = (ushort*)pSrc;

 ushort* pDest_Pixel = (ushort*)pDest;

 int lMySrcStride = (lSrcStride / 2); // lSrcStride is in bytes and we need words

 int lMyDestStride = (lDestStride / 2); // lSrcStride is in bytes and we need words

 for (int y = 0; y < dwHeightInPixels; y++)

 {

 for (int x = 0; x < dwWidthInPixels; x++)

 {

 // Byte order is Y0 U0 Y1 V0

 // Each WORD is a byte pair (Y, U/V)

 // Windows is little-endian so the order appears reversed.

 pDest_Pixel[x] = (ushort)((pSrc_Pixel[x] & 0x00FF) | 0x8000);

 }

The WMF Components

118

 pSrc_Pixel += lMySrcStride;

 pDest_Pixel += lMyDestStride;

 }

}

Source: TantaTransformDirect::MFTTantaGrayscale_Sync::TransformImageOfTypeYUY2

The above code is designed to convert a video frame in YUY2 format to grayscale - don’t

concern yourself too much with the details though. For now just note that the unsafe

key word is used in the function header and that the code is doing what is really only

some pretty standard pointer math on the underlying data.

MANIPULATING RAW MEDIA DATA WITH EXTERNS

It is possible to define C# externs to functions in external DLLs to perform block memory

manipulation operations for you. Two of these are the CopyMemory and FillMemory

functions in the Kernel32.dll. The definitions for these two externs are shown in the

code section below.

#region Externs

[DllImport("Kernel32.dll"), System.Security.SuppressUnmanagedCodeSecurity]

private static extern void CopyMemory(IntPtr Destination, IntPtr Source, int Length);

[DllImport("kernel32.dll"), System.Security.SuppressUnmanagedCodeSecurity]

private static extern void FillMemory(IntPtr destination, int len, byte val);

#endregion

Source: TantaTransformDirect::MFTTantaGrayscale_Sync

It is pretty rare one runs across a situation in which one can use these two calls to

perform operations as efficiency requires that there are large sections of data present

that need to be copied or filled. However, having said that, the conversion of an NV12

video frame to grayscale is one of those cases. It just so happens that the NV12 format

associates the video data into specific groups called “planes”. In the case of NV12, in

order to convert the image to grayscale, all we need to do is copy one of the planes and

fill in the other with dummy data. This job, as is shown in the code section below, is

ideal for the CopyMemory and FillMemory externs.

/// +=

/// <summary>

/// Copy a NV12 formatted image to an output buffer while converting to grayscale.

/// </summary>

/// <param name="pDest">Pointer to the destination buffer.</param>

/// <param name="lDestStride">Stride of the destination buffer, in bytes.</param>

/// <param name="pSrc">Pointer to the source buffer.</param>

/// <param name="lSrcStride">Stride of the source buffer, in bytes.</param>

/// <param name="dwWidthInPixels">Frame width in pixels.</param>

/// <param name="dwHeightInPixels">Frame height, in pixels.</param>

/// <history>

/// 01 Nov 18 Cynic - Ported In

/// </history>

private void TransformImageOfTypeNV12(

 IntPtr pDest,

 int lDestStride,

 IntPtr pSrc,

 int lSrcStride,

 int dwWidthInPixels,

 The WMF Components

 119

 int dwHeightInPixels

)

{

 // in this code we do not need to indulge in "unsafe" pointer

 // manipulations because NV12 is planar (Y plane, followed

 // by packed U-V plane), we can just copy the planes we need

 // and fill the rest with dummy data

 // Y plane

 for (int y = 0; y < dwHeightInPixels; y++)

 {

 CopyMemory(pDest, pSrc, dwWidthInPixels);

 pDest = new IntPtr(pDest.ToInt64() + lDestStride);

 pSrc = new IntPtr(pSrc.ToInt64() + lSrcStride);

 }

 // U-V plane

 for (int y = 0; y < dwHeightInPixels / 2; y++)

 {

 FillMemory(pDest, dwWidthInPixels, 0x80);

 pDest = new IntPtr(pDest.ToInt64() + lDestStride);

 }

}

Source: TantaTransformDirect::MFTTantaGrayscale_Sync::TransformImageOfTypeNV12

Note how the above function does not require the use of the unsafe keyword in the

function header. The calling of extern functions is not considered “unsafe” by C#.

Admittedly, it is rare to find a circumstance like this where the memory block

manipulation externs can be used – however, keep the technique in mind. It may come

in useful one day.

THE MEDIA BUFFER

Clearly the raw media data will have a length. Since the data storage area is reused by

Windows Media Foundation there will also be a maximum possible length associated

with the raw media data. The length of the raw media data can be less than the total

amount of memory allocated. Any WMF entity that manipulates or processes this data

will need to know basic things like the total length of the data and the maximum

allocated memory size. The easy way to enforce this association is to create a container

whose payload is both the raw media data and the basic information such as length and

allocation.

The name for the container that has both the raw media data and other basic

information regarding the raw data size is called a Media Buffer. A Media Buffer

implements the IMFMediaBuffer interface. Although all of the previous examples in this

section referred to video, it should be noted that audio data (and other Media Major

Types) is also contained within Media Buffer objects. Media Buffers are a generic multi-

use media data container.

So what functionality do you get in the IMFMediaBuffer? Just some pretty basic things

really such as the ability to find out the size of the data, the maximum size and the

ability to lock and unlock access to the raw data. It is the call to the Lock() function of

The WMF Components

120

the IMFMediaBuffer interface that returns an IntPtr to the raw data. The Lock()

function also returns the size of the raw data and the maximum size as well. It is very

important to call the Unlock() function when you are done with the data since nothing

else will be able access or re-use the Media Buffer until you do.

public static void LockIMFMediaBufferAndGetRawData(IMFMediaBuffer mediaBuffer,

 out IntPtr rawDataPtr,

 out int maxLen,

 out int currentLen)

{

 // init

 rawDataPtr = IntPtr.Zero;

 maxLen = 0;

 currentLen = 0;

 if (mediaBuffer == null) throw new Exception("mediaBuffer == null");

 // must call an UnLockIMFBuffer

 HResult hr = mediaBuffer.Lock(out rawDataPtr, out maxLen, out currentLen);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to mediaBuffer.Lock failed. Err=" + hr.ToString());

 }

 return;

}

Source: TantaCommon::TantaWMFUtils::LockIMFMediaBufferAndGetRawData

The code section above demonstrates the usage of the Lock() function on a Media

Buffer. Note how an IntPtr to the raw data is returned along with the two length

values.

A length and a maximum length are nice generic things to know about the raw data in a

Media Buffer. However video data (which WMF deals with a lot) has its own additional

requirement. Video is presented on the screen as a sequence of pixels of a certain

length. The length of any one line of video pixels is called the “stride”. It is possible for

the stride to be longer than the actual pixel width on the display if there are padding

bytes added to the end. In order to accommodate video data in Media Buffers, the

Windows Media Foundation team created an entity called a 2D Media Buffer. A 2D

Media Buffer implements the IMF2DBuffer interface and this interface inherits from

IMFMediaBuffer. In other words, a 2D Media Buffer is always a Media Buffer but not all

Media Buffers are 2D Buffers.

Only video data is found in 2D Buffers and each 2D buffer will have one frame of video

data. The IMF2DBuffer interface contains more functionality and its lock and unlock

functions are called Lock2D and Unlock2D. If you call Lock2D() you will get the stride

returned to you instead of the raw data length and maximum length. Note if you call

Lock2D() you must call Unlock2D() to release the lock – calling the base class

Unlock() on a buffer locked with a Lock2D() call will not do the job properly.

 public static void LockIMF2DBufferAndGetRawData(IMF2DBuffer media2DBuffer,

 out IntPtr rawDataPtr,

 out int bufferStride)

{

 The WMF Components

 121

 // init

 rawDataPtr = IntPtr.Zero;

 bufferStride = 0;

 if (media2DBuffer == null) throw new Exception("media2DBuffer == null");

 // must call an UnLockIMF2DBuffer

 HResult hr = media2DBuffer.Lock2D(out rawDataPtr, out bufferStride);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to media2DBuffer.Lock2D failed. Err=" + hr.ToString());

 }

 return;

}

Source: TantaCommon::TantaWMFUtils::LockIMF2DBufferAndGetRawData

The documentation recommends that, if you are dealing with an IMF2DBuffer, that you

always use the Lock2D and Unlock2D locking functions – they are more efficient in

dealing with non-contiguous data. There are also a number of other functions in the

IMF2DBuffer interface which deal with the copy of the data to a contiguous format –

these will not be discussed in this book. You can look them up if sufficiently interested.

CREATING A MEDIA BUFFER

It should be noted, in case it is not clear, that it is often possible to “process in place”. In

other words, you don’t always have to copy the data to another buffer if you change it.

If you configure your Transform to use In-Place Processing (look up the

MFTInputStreamInfoFlags.ProcessesInPlace flag) you can just make your changes

to the existing raw data and do not have to create a new Media Buffer for the output.

The MFTTantaWriteText_Sync Transform is an example of a Transform that does in-place

processing and the MFTTantaGrayscale_Sync Transform is an example of one which

copies the data to a new output buffer which is provided to it by the Media Session.

Both of these Transforms are found in the TantaTransformDirect sample code.

However, there are occasions when you do have to create a new Media Buffer. There

are several static WMF functions which can create a new Media Buffer for you but most

of them are designed for pretty specialized circumstances. We will not discuss those

oddball functions here – the one which is pretty much universally used is the

MFCreateMemoryBuffer() static function.

... more code

IMFMediaBuffer outputBuffer = null;

// Allocate an output buffer.

hr = MFExtern.MFCreateMemoryBuffer(sourceSampleSize, out outputBuffer);

if (hr != HResult.S_OK)

{

 throw new Exception("call to MFCreateMemoryBuffer failed. Err=" + hr.ToString());

}

if (outputBuffer == null)

{

 throw new Exception("call to MFCreateMemoryBuffer failed. outputBuffer == null");

}

The WMF Components

122

... more code

Source: TantaCommon::TantaWMFUtils::CreateMediaSampleFromIntPtr

The code section above shows this function in operation. Note that you have to specify

the size of the buffer when you create it. This is what the sourceSampleSize parameter

(it is an int) is doing.

An IMF2DBuffer is similarly created with a call to the MFCreate2DMediaBuffer() static

function. This function takes few more parameters such as the frame width, height and

a FOURCC code but the usage is similar and will not be reproduced here.

THE MEDIA SAMPLE

One of the primary functions of the Media Session (see The Pipeline section in The

WMF Components chapter) is to synchronize the flow of data through the Pipeline so

that each branch presents its data to the Media Sink at the appropriate time. This

ensures that the audio the user hears matches the video currently on display on the

screen. It is easy to see that information regarding the “time of display” and “duration

of display” information of the Media Buffer would be quite useful to have available as

the media data makes its way through the Pipeline.

The “time of display” and “duration” type of presentation information is really not

appropriate to store in the Media Buffer since the Media Buffer is purely designed to

facilitate the transport of the raw media data. The “time of display” and “duration”

meta-data are too high level and very dependent on the Media Major Type and Media

Sub-Type.

The solution was to implement another container which wraps a Media Buffer (or

buffers) and associates the Presentation type information with the contained Media

Buffers. The name of this container is called a Media Sample and all Media Samples

implement the IMFMediaSample interface. Note that unlike Media Buffers there is not a

special Media Sample for video information. There is no need, a Media Sample is also an

Attribute Container and any significant configuration details are easily stored there if

required.

A Media Sample can be thought of as an object that contains an ordered list of zero or

more Media Buffers and the Presentation meta-data describing them. Why might more

than one buffer be present in a Media Sample? Well, if the data is streaming in over a

network, the Media Source might decide to place all of the data that it has into a single

Media Sample. In such an event, the Media Source might not try to collect all the data

into a single buffer and will instead just place multiple buffers in the same sample.

 The WMF Components

 123

Other than functions to get or set the sample time and duration, the IMFMediaSample

interface mostly concerns itself with the manipulation of the Media Buffers it contains.

There are functions to add a buffer, remove a buffer, count them, enumerate them and,

possibly most usefully, coalesce all of the buffers into one. To be realistic it is unusual to

see more than one Media Buffer in a Media Sample. In addition, if you are dealing with

video data, it would be unusual to see a Media Buffer that contained more than one

video frame. It is possible, and the standard requires support for other types of

behavior, but people rarely like to introduce such complexity into their applications.

Media Samples can also contain a multitude of Attributes which specify the intricate

details of how the Media Buffers are to be processed. These Attributes are all mostly

pretty obscure and so they will not be discussed here - you can easily look them up if

you need to.

CREATING A NEW MEDIA SAMPLE

Theoretically, the creation of a Media Sample is a simple process – just call the Windows

Media Foundation static function MFCreateSample. In reality, while the creation is a

simple, the process of populating the new Media Sample can get quite complex. The

code section below shows the process of creating and populating a Media Sample with

data from a provided IntPtr.

/// +=

/// <summary>

/// Creates a IMFSample from a IntPtr to Buffer data. Will throw an exception

/// for anything it does not like. Always creates a sample with an

/// IMFMediaBuffer

/// </summary>

/// <param name="sourceSampleFlags">the sample flags</param>

/// <param name="sourceSampleSize">the sample size</param>

/// <param name="sourceSampleDuration">the sample duration</param>

/// <param name="sourceSampleTimeStamp">the sample time</param>

/// <param name="sourceSampleIntPtr">the source IntPtr</param>

/// <param name="sourceAttributes">the attributes for the sample - we copy these</param>

/// <history>

/// 01 Nov 18 Cynic - Ported in

/// </history>

public static IMFSample CreateMediaSampleFromIntPtr(int sourceSampleFlags,

 long sourceSampleTimeStamp,

 long sourceSampleDuration,

 IntPtr sourceSampleIntPtr,

 int sourceSampleSize,

 IMFAttributes sourceAttributes)

{

 HResult hr;

 IMFSample outputSample = null;

 IMFMediaBuffer outputBuffer = null;

 IntPtr destRawDataPtr = IntPtr.Zero;

 try

 {

 // Create a new sample

 hr = MFExtern.MFCreateSample(out outputSample);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MFCreateSample failed. Err=" + hr.ToString());

 }

 if (outputSample == null)

 {

The WMF Components

124

 throw new Exception("call to MFCreateSample failed. outputSample == null");

 }

 // Allocate an output buffer.

 hr = MFExtern.MFCreateMemoryBuffer(sourceSampleSize, out outputBuffer);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MFCreateMemoryBuffer failed. Err=" + hr.ToString());

 }

 if (outputBuffer == null)

 {

 throw new Exception("call to MFCreateMemoryBuffer failed. outputBuffer == null");

 }

 // add the buffer to the sample

 hr = outputSample.AddBuffer(outputBuffer);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to AddBuffer failed. Err=" + hr.ToString());

 }

 // get a pointer to the raw data from the output buffer. We need this in

 // order to copy the input raw data across

 int maxLen = 0;

 int currentLen = 0;

 TantaWMFUtils.LockIMFMediaBufferAndGetRawData(outputBuffer,

 out destRawDataPtr,

 out maxLen, out currentLen);

 // now that we have the input data and a pointer to the destination area

 // do the work to copy it across.

 CopyMemory(destRawDataPtr, sourceSampleIntPtr, sourceSampleSize);

 // Set the data size on the output buffer.

 hr = outputBuffer.SetCurrentLength(sourceSampleSize);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to SetCurrentLength failed. Err=" + hr.ToString());

 }

 // Set the sample time stamp

 hr = outputSample.SetSampleTime(sourceSampleTimeStamp);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to SetSampleTime failed. Err=" + hr.ToString());

 }

 // set the sample duration

 hr = outputSample.SetSampleDuration(sourceSampleDuration);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to SetSampleDuration failed. Err=" + hr.ToString());

 }

 // set the attributes

 if (sourceAttributes != null)

 {

 if ((outputSample is IMFAttributes) == true)

 {

 sourceAttributes.CopyAllItems((outputSample as IMFAttributes));

 }

 }

 }

 finally

 {

 TantaWMFUtils.UnLockIMFMediaBuffer(outputBuffer);

 if(outputBuffer!=null)

 {

 Marshal.ReleaseComObject(outputBuffer);

 outputBuffer = null;

 }

 }

 return outputSample;

}

Source: TantaCommon::TantaWMFUtils::CreateMediaSampleFromIntPtr

 The WMF Components

 125

Now that you understand the “nested” container mechanism of Media Samples it can

be seen that the above code proceeds fairly logically. First the new Media Sample is

created and then a Media Buffer is created for the new data.

hr = MFExtern.MFCreateMemoryBuffer(sourceSampleSize, out outputBuffer);

Note that the use of the MFCreateMemoryBuffer() call implies that a generic

IMFMediaBuffer is being used here. If you needed a 2D Buffer you would have to edit

this line to call MFCreate2DMediaBuffer(). The size of the Media Buffer is specified as

a parameter on the call to the MFCreateMemoryBuffer(). Since the Media Sample

needs to contain the Media Buffer, a call to AddBuffer() on the newly created output

sample places it there.

hr = outputSample.AddBuffer(outputBuffer);

The only way to get access to the IntPtr of the destination memory in the newly created

Media Buffer is to lock it and this is done with a call to the

LockIMFMediaBufferAndGetRawData() wrapper function in the TantaWMFUtils library.

Recall from our earlier discussion that the locking method is also different for

IMF2DBuffers, if you were using those you would have to change this line to call

LockIMF2DBufferAndGetRawData(). Now that we have a source and destination IntPtr

(the source IntPtr is supplied as a parameter), the next line simply calls the CopyMemory

extern.

CopyMemory(destRawDataPtr, sourceSampleIntPtr, sourceSampleSize);

This is a very good use for this external function call since it excels at shifting large

blocks of memory quickly. The next lines set the Sample Time and the Duration on the

Media Sample. The association of these two items with the Media Buffer is essential –

the Media Sample is useless without them.

hr = outputSample.SetSampleTime(sourceSampleTimeStamp);

hr = outputSample.SetSampleDuration(sourceSampleDuration);

If any Attributes were supplied as parameters to the function call, the final section of

code copies them over into the Attributes of the new Media Sample. The

CopyAllItems() call is part of the IMFAttributes interface.

sourceAttributes.CopyAllItems((outputSample as IMFAttributes));

Note that the Unlock call is placed in the finally block of the function. This ensures

that it always gets called even if exceptions are thrown. In particular, observe that the

newly created Media Buffer is also released in the finally block – this must be done or

you will get a memory leak.

Marshal.ReleaseComObject(outputBuffer);

The WMF Components

126

Don’t worry that the Media Sample is still using the Media Buffer you just released, the

act of adding the Media Buffer to the Media Sample caused an additional reference to

be placed on it. The Media Buffer will not actually go anywhere until that reference is

also released by the Media Sample. Of course, the new Media Sample will have to be

released as well – the caller of the function is responsible for handling that.

The TantaWMFUtils class also contains a function entitled

CreateMediaSampleFromBuffer which can create a new Media Sample from an

existing Media Buffer.

/// +=

/// <summary>

/// Creates a IMFSample from IMFMediaBuffer data. Will throw an exception

/// for anything it does not like

/// </summary>

/// <param name="sourceSampleFlags">the sample flags</param>

/// <param name="sourceSampleSize">the sample size</param>

/// <param name="sourceSampleDuration">the sample duration</param>

/// <param name="sourceSampleTimeStamp">the sample time</param>

/// <param name="sourceSampleBuffer">the sample buffer</param>

/// <param name="sourceAttributes">the attributes for the sample - we copy these</param>

/// <history>

/// 01 Nov 18 Cynic - Ported in

/// </history>

public static IMFSample CreateMediaSampleFromBuffer(int sourceSampleFlags,

 long sourceSampleTimeStamp, long sourceSampleDuration,

 IMFMediaBuffer sourceSampleBuffer, int sourceSampleSize,

 IMFAttributes sourceAttributes)

{

 IntPtr srcRawDataPtr = IntPtr.Zero;

 bool srcIs2D = false;

 int srcStride;

 // in C# the actual video data is down in the unmanaged heap. We have to get

 // an intptr to the data in order to copy it. In C# this involves a bit

 // of marshaling

 try

 {

 // Lock the input buffer. Use the IMF2DBuffer interface

 // (if available) as it is faster

 if ((sourceSampleBuffer is IMF2DBuffer) == false)

 {

 // not an IMF2DBuffer - get the raw data from the IMFMediaBuffer

 int maxLen = 0;

 int currentLen = 0;

 TantaWMFUtils.LockIMFMediaBufferAndGetRawData(sourceSampleBuffer,

 out srcRawDataPtr, out maxLen, out currentLen);

 // now make the call to the version of this function which accepts

 // only IntPtrs as the source

 return CreateMediaSampleFromIntPtr(sourceSampleFlags,

 sourceSampleTimeStamp, sourceSampleDuration,

 srcRawDataPtr, sourceSampleSize, sourceAttributes);

 }

 else

 {

 // we are an IMF2DBuffer, we get the stride here as well

 TantaWMFUtils.LockIMF2DBufferAndGetRawData((sourceSampleBuffer as IMF2DBuffer),

 out srcRawDataPtr, out srcStride);

 srcIs2D = true;

 // now make the call to the version of this function which accepts

 // only IntPtrs as the source

 return CreateMediaSampleFromIntPtr(sourceSampleFlags, sourceSampleTimeStamp,

 sourceSampleDuration, srcRawDataPtr,

 sourceSampleSize, sourceAttributes);

 }

 }

 finally

 {

 if (srcIs2D == false) TantaWMFUtils.UnLockIMFMediaBuffer(sourceSampleBuffer);

 else TantaWMFUtils.UnLockIMF2DBuffer((sourceSampleBuffer as IMF2DBuffer));

 }

 The WMF Components

 127

}

Source: TantaCommon::TantaWMFUtils::CreateMediaSampleFromIntPtr

As can readily be observed in the above code, the CreateMediaSampleFromBuffer

function does little more than call the appropriate lock function to obtain an IntPtr for

the raw data in the Media Buffer. Once it has that, the Media Sample can readily be

created with a call to the previously discussed CreateMediaSampleFromIntPtr

function. The operation of the LockIMFMediaBufferAndGetRawData function used

above was described in the previous Creating a Media Buffer section and will not be

discussed here.

CALLBACK OBJECTS

To start this section, it is probably best to discuss what a Callback Object is and why they

are needed. Once some background is provided, the discussion of the use of Callback

Objects in Windows Media Foundation will make a lot more sense.

You probably already know how C# has a really clever and useful Delegate/Event system

which can permit other objects to “sign up” to receive alerts or information from some

other component in the application? Well, C++ does not really have that functionality

and Windows Media Foundation is primarily designed to be used with C++. What C++

does have is the ability to pass the address of an object to another component. If this

object is coupled with an interface definition, then the calling object will know exactly

the name and number of functions available in the object and the type of parameters to

supply to each. Thus, if the calling component calls a specified function when an event

or other message is to be passed, then the information will make it back into a function

in the Callback Object and the interested party can probably use it or take action based

on it. That’s essentially what a Callback is – the address of an object to call and the

knowledge of the interface that specifies the functions in the Callback Object. Think of it

as a less refined Delegate/Event mechanism where the names and parameters of the

functions are hard coded as an interface.

Windows Media Foundation uses Callback Objects (sometimes called Callback Handlers)

for a variety of purposes and it is important to realize that there are numerous

interfaces defined for this purpose. For example, Callback Objects used by the Media

Session must implement the IMFAsyncCallback interface, Callback Objects used by the

Source Reader (in Asynchronous Mode) must implement the

IMFSourceReaderCallback and Callback Objects used by the Sample Grabber Sink

must implement the IMFSampleGrabberSinkCallback interface. These are just the

The WMF Components

128

ones used in the Tanta Sample Applications – there are many others. The point here is

that …

Windows Media Foundation defines a large number of

Callback interfaces. They are not the same and, in general,

are specific to a single component. When you work with

Callbacks, do not get them mixed up with each other.

Sometimes the use of a Callback Object is mandatory. For example, the Media Session

requires an IMFAsyncCallback Object and the component will not work without it.

Other times the Callback Object is optional. For example, if you do not specify an

IMFSourceReaderCallback Callback Object to a Source Reader it will just assume you

wish to work in Synchronous Mode.

Be aware that in much of the example source code you see on the Internet, the object

that supplies the Callback Object is itself the Callback Object. In other words the object

supplies its own address and implements the appropriate Callback interface functions.

This makes for a curious sort of re-entrant looping code the logic of which can be hard

to follow. The Tanta Samples do not use this structure. In the Tanta Sample Projects, the

Callback Object is always a separate object (see the TantaAsyncCallbackHandler,

TantaSourceReaderCallbackHandler and TantaSampleGrabberSinkCallback

classes). Those classes are designed to be as easy as possible to understand and the

Callback Object generally passes events and information back to the owner application

via standard C# Events and Delegates. Not everybody does it this way – keeping this fact

in mind will greatly simplify your understanding of other example code.

Another important issue to be aware of, when dealing with actions triggered by a

Callback Object, is that the calling entity almost certainly is working on its own pool of

threads. The code in the Callback Object will not be executing on the thread that

originally configured the Callback Object.

Calls made into the functions of a Callback Object will

almost certainly be on a different thread than your

applications main thread. This means in an action

triggered by a function in a Callback Object, you MUST

take all multi-thread based precautions. For example, do

not access forms or controls from within it and watch out

for locking issues.

 The WMF Components

 129

This is not to say that you can never update the screen from a Callback Event. All it really

means is that you have to use the standard C# Invoke constructs to ensure that you are

back on the main form thread before you do. The code section below taken from the

TantaAudioFileCopyViaPipelineAndWriter Sample Project illustrates how errors in the

Sample Grabber Sink are presented to the screen.

/// +=

/// <summary>

/// Handles error reports from the AsyncCallBackHandler. Note you CANNOT

/// assume this is called from within the form thread.

/// </summary>

/// <param name="caller">the Callback Object obj</param>

/// <param name="errMsg">the error message</param>

/// <param name="ex">the exception (if there is one) that generated the error</param>

/// <history>

/// 01 Nov 18 Cynic - Started

/// </history>

public void HandleSampleGrabberAsyncCallBackErrors(object caller, string errMsg, Exception ex)

{

 // log it - the logger is thread safe!

 if (errMsg == null) errMsg = "unknown error";

 LogMessage("HandleSampleGrabberAsyncCallBackErrors, errMsg=" + errMsg);

 if (ex != null)

 {

 LogMessage("HandleSampleGrabberAsyncCallBackErrors, ex=" + ex.Message);

 LogMessage("HandleSampleGrabberAsyncCallBackErrors, ex=" + ex.StackTrace);

 }

 // Ok, you probably already know this but I'll note it here because this is so important

 // You do NOT want to update any form controls from a thread that is not the forms main

 // thread. Very odd, intermittent and hard to debug problems will result. Even if your

 // handler does not actually update any form controls do not do it! Sooner or later you

 // or someone else will make changes that calls something that eventually updates a

 // form or control and then you will have introduced a really hard to find bug.

 // So, we always use the InvokeRequired...Invoke sequence to get us back on the form thread

 if (InvokeRequired == true)

 {

 // call ourselves again but this time be on the form thread.

 Invoke(new TantaSampleGrabberSinkCallback.SampleGrabberAsyncCallBackError_Delegate(

 HandleSampleGrabberAsyncCallBackErrors),

 new object[] { this, errMsg, ex });

 return;

 }

 // if we get here we are assured we are on the form thread.

 // do everything to close all media devices

 CloseAllMediaDevices();

 buttonStartStopCopy.Text = START_COPY;

 // re-enable our screen controls

 SyncScreenControlsToCopyState(false, null);

 // tell the user

 if (ex != null) OISMessageBox("There was an error processing.\n\n " + ex.Message);

 else if (errMsg != null)

 {

 OISMessageBox("There was an error processing the audio stream.\n\n" + errMsg);

 }

 else

 {

 OISMessageBox("There was an unknown error processing the audio stream ");

 }

}

Source: TantaAudioFileCopyViaPipelineAndWrite::frmMain::HandleSampleGrabberAsyncCallBackErrors

Just for completeness, and so you have an example which may be useful in your own

code, let’s review how the HandleSampleGrabberAsyncCallBackErrors function

shown above is called. The function is located in the frmMain class of the

The WMF Components

130

TantaAudioFileCopyViaPipelineAndWriter Sample Project and it is set as an event

handler on the Sample Grabber Sink Callback Object.

sampleGrabberSinkCallback.SinkWriter = workingSinkWriter;

sampleGrabberSinkCallback.InitForFirstSample();

sampleGrabberSinkCallback.SampleGrabberAsyncCallBackError =

 HandleSampleGrabberAsyncCallBackErrors;}

Source: TantaAudioFileCopyViaPipelineAndWrite::frmMain::PrepareSessionAndTopology

Inside the TantaSampleGrabberSinkCallback class, the

SampleGrabberAsyncCallBackError event is structured as a standard C# Event and

Delegate as shown below

// our error reporting delegate

public delegate void SampleGrabberAsyncCallBackError_Delegate(object obj,

 string errMsg, Exception ex);

public SampleGrabberAsyncCallBackError_Delegate SampleGrabberAsyncCallBackError = null;

Source: TantaAudioFileCopyViaPipelineAndWrite::TantaSampleGrabberSinkCallback

The major processing function in the TantaSampleGrabberSinkCallback class is

OnProcessSampleEx() function and any errors in it will trigger a call to the

SampleGrabberAsyncCallBackError event as shown below

... more code

// we have all the information we need to create a new output sample

outputSample = TantaWMFUtils.CreateMediaSampleFromIntPtr(sampleFlags, sampleTimeStamp,

sampleDuration, sampleBuffer, sampleSize, null);

if (outputSample == null)

{

 string errMsg = "Error on call to CreateMediaSampleFromBuffer outputSample == null";

 SampleGrabberAsyncCallBackError(this, errMsg, null);

 return HResult.E_FAIL;

}

... more code

Source: TantaAudioFileCopyViaPipelineAndWrite::TantaSampleGrabberSinkCallback

The OnProcessSampleEx() function is certainly not on the main form thread, and

neither will be the handler when the error event is called. A careful review of the code

in the HandleSampleGrabberAsyncCallBackErrors function will show how the

InvokeRequired() function detects this and a subsequent Invoke() call is used to

recursively call the HandleSampleGrabberAsyncCallBackErrors function again – this

time on the main form thread.

THE MEDIA SESSION CALLBACK OBJECT

Media Session is essentially asynchronous – it performs its processing on multiple

threads and you, the programmer, have no access to this. So, if the Media Session is

merrily working along in the background, how then can it provide information about

events of interest to the application? Well, you have probably guessed it – the Media

 The WMF Components

 131

Session uses a Callback Object. The alternative would be to have your application poll

the Media Session for event or status changes - nobody wants to do that.

Callback Objects intended for use with Media Sessions must implement the

IMFAsyncCallback interface. It should be noted that the Tanta Sample Applications use

the TantaAsyncCallbackHandler class which is derived from, and implements, that

interface. All projects in the Tanta Sample code that use a Media Session, use this

Callback Object – it is generic.

The IMFAsyncCallback interface defines a number of functions but the only one of

interest to us here is named Invoke. Please note the name “Invoke” has nothing to do

with the C# cross-threading mechanism also named “Invoke” – in this interface it is just

an unfortunate naming collision. Unlike many other Callback Objects which expect the

programmer to undertake some processing, the Media Session uses its Callback Object

purely to pass messages. Any error, thrown by any object, anywhere in the Pipeline will

appear in the Invoke function of the Media Sessions Callback Object. Similarly, any

event of note such as MESessionStarted, MESessionPaused, MESessionStopped,

MESessionClosed and over a hundred others (see the MediaEventType enum in

MF.Net library) will also appear here. Most of these events can be ignored, most of the

time, and you will find that the Tanta Sample programs only intercept the events they

really need.

There are lots of threads going on inside the Media Session and it takes care not to call

its Callback Object function simultaneously. If you take certain precautions you can be

sure you will always only get one event at a time. You can get quite a sequential blizzard

of them however, so any processing you do which is triggered by the Media Session

Callback Object should be pretty quick. The event process is regulated by the calls your

applications makes to the Media Sessions BeginGetEvent() and EndGetEvent()

functions and via a C# Lock() you obtain. You call BeginGetEvent() to let the Media

Session that you can receive events and you call EndGetEvent() functions to let it know

that it can no longer send events and you do this inside of a Lock() to make sure that

nothing slips by. If we have a look at the Invoke function of the

TantaAsyncCallbackHandler class we can see this happening.

/// +=

/// <summary>

/// Part of the IMFAsyncCallback interface. This is called when an

/// asynchronous operation is completed.

/// </summary>

/// <param name="pResult">Pointer to the IMFAsyncResult interface. </param>

/// <returns>S_OK for success, others for fail</returns>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

HResult IMFAsyncCallback.Invoke(IMFAsyncResult pResult)

{

The WMF Components

132

 HResult hr;

 IMFMediaEvent eventObj = null;

 MediaEventType meType = MediaEventType.MEUnknown; // Event type

 HResult hrStatus = 0; // Event status

 lock (this)

 {

 try

 {

 if (MediaSession == null) return HResult.S_OK;

 // Complete the asynchronous request this is tied to the previous

 // BeginGetEvent call and MUST be done. The output here is a pointer to the

 // IMFMediaEvent interface describing this event. Note we MUST

 // release this interface

 hr = MediaSession.EndGetEvent(pResult, out eventObj);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to EndGetEvent failed. Err=" + hr.ToString());

 }

 if (eventObj == null)

 {

 throw new Exception("call to EndGetEvent failed. eventObj == null");

 }

 // Get the event type. The event type indicates what happened to trigger the event.

 // It also defines the meaning of the event value.

 hr = eventObj.GetType(out meType);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to GetType failed. Err=" + hr.ToString());

 }

 // Get the event status. If the operation that generated the event was successful,

 // the value is a success code. A failure code means that an error condition

 // triggered the event.

 hr = eventObj.GetStatus(out hrStatus);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to GetStatus failed. Err=" + hr.ToString());

 }

 // Check if we are being told that the the async event succeeded.

 if (hrStatus != HResult.S_OK)

 {

 // The async operation failed. Notify the application

 if (MediaSessionAsyncCallBackError != null)

 MediaSessionAsyncCallBackError(this, "Error Code =" + hrStatus.ToString(), null);

 }

 else

 {

 // we are being told the operation succeeded and therefore the event

 // contents are meaningful. Switch on the event type.

 switch (meType)

 {

 // we let the app handle all of these. There is not really

 // much we can do here

 default:

 MediaSessionAsyncCallBackEvent(this, eventObj, meType);

 break;

 }

 }

 }

 catch (Exception ex)

 {

 // The async operation failed. Notify the application

 if (MediaSessionAsyncCallBackError != null)

 MediaSessionAsyncCallBackError(this, ex.Message, ex);

 }

 finally

 {

 // Request another event if we are still operational.

 if (((meType == MediaEventType.MESessionClosed)

 || (meType == MediaEventType.MEEndOfPresentation))==false)

 {

 // Begins an asynchronous request for the next event in the queue

 hr = MediaSession.BeginGetEvent(this, null);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to BeginGetEvent failed. Err=" + hr.ToString());

 }

 }

 The WMF Components

 133

 // release the event we just processed

 if (eventObj != null)

 {

 Marshal.ReleaseComObject(eventObj);

 }

 }

 } // bottom of lock(this)

 return HResult.S_OK;

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::TantaAsyncCallbackHandler::Invoke

The first thing the Invoke function in the Media Session Callback Object does is create a

lock and it uses itself as a handy lock object

lock (this)

{

 ... code here

}

The next step is to call the Media Session EndGetEvent() function to prevent any more

events being generated.

hr = MediaSession.EndGetEvent(pResult, out eventObj);

The EndGetEvent() function does more than just inhibit any more event generation – it

also gives us an event object. This object is of type IMFMediaEvent and we can use it to

determine whether we are dealing with a “notification” type event or with an “error”

type event. We do this by calling the GetStatus() function of the IMFMediaEvent

interface.

hr = eventObj.GetStatus(out hrStatus);

We also call the GetType() function of the IMFMediaEvent interface for use later. We

don’t need it if the event is an error but we will if the event is of the “notification”

variety. Once we have the Event Type and Event Status we can branch on the output of

the GetStatus() function (the hrStatus value in the above code).

if (hrStatus != HResult.S_OK)

{

 // The async operation failed. Notify the application

 if (MediaSessionAsyncCallBackError != null)

 MediaSessionAsyncCallBackError(this, "Error Code =" + hrStatus.ToString(), null);

}

If the hrStatus value is not HResult.S_OK we are dealing with an error and simply call

the error MediaSessionAsyncCallBackError handling event. If we are not dealing

with an error, the code simply calls the MediaSessionAsyncCallBackEvent event.

switch (meType)

{

 // we let the app handle all of these. There is not really much we can do here

 default:

 MediaSessionAsyncCallBackEvent(this, eventObj, meType);

 break;

}

As you can see the call to the MediaSessionAsyncCallBackEvent event is wrapped in a

switch statement but this is mostly for later use. The function in the application which

The WMF Components

134

processes the MediaSessionAsyncCallBackEvent event determines which events it

will take notice of and which it will not. The two functions in the application which

handle the error and notification events will not be discussed in this section – the

Implementing the Pipeline Architecture section in the Practical WMF Architectures

chapter will provide a more detailed discussion.

It should be noted that the only reason the TantaAsyncCallbackHandler class knows

about the event handlers is because it was told that information just prior to the

Callback Object being given to the Media Session.

// set up our media session Callback Object.

mediaSessionAsyncCallbackHandler = new TantaAsyncCallbackHandler();

mediaSessionAsyncCallbackHandler.Initialize();

mediaSessionAsyncCallbackHandler.MediaSession = mediaSession;

mediaSessionAsyncCallbackHandler.MediaSessionAsyncCallBackError =

HandleMediaSessionAsyncCallBackErrors;

mediaSessionAsyncCallbackHandler.MediaSessionAsyncCallBackEvent =

HandleMediaSessionAsyncCallBackEvent;

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::PrepareSessionAndTopology

Please realize that this is just the way the Tanta Sample Applications pass information

back from the Callback Object. Not all applications do it this way (particularly the C++

ones).

However, the Invoke function of the TantaAsyncCallbackHandler class is still not

complete. The events may have been passed on the application but as far as the Media

Session is concerned it still cannot send any. We resolve this issue by making a

BeginGetEvent() call to let the Media Session that another event can be processed – if

required.

// Request another event if we are still operational.

if (((meType == MediaEventType.MESessionClosed)

 || (meType == MediaEventType.MEEndOfPresentation))==false)

{

 // Begins an asynchronous request for the next event in the queue

 hr = MediaSession.BeginGetEvent(this, null);

 if (hr != HResult.S_OK)

 {

 throw new Exception("Invoke call to BeginGetEvent failed. Err=" + hr.ToString());

 }

}

Note that we only turn events on again in the Media Session if the Media Session is

operational. Thus any MESessionClosed or MEEndOfPresentation event will inhibit

further event processing (after those events are sent to the application of course).

So, one remaining question is “how did the events get enabled on the Media Session in

the first place”? Well, if you look at the code where the Media Session is built (the

PrepareSessionAndTopology function in the Tanta Sample Applications) you will see a

BeginGetEvent() call as is shown below.

// Register the Callback Object with the session and tell it that events can

// start. This does not actually trigger an event it just lets the media session

 The WMF Components

 135

// know that it can now send them if it wishes to do so.

hr = mediaSession.BeginGetEvent(mediaSessionAsyncCallbackHandler, null);

if (hr != HResult.S_OK)

{

 throw new Exception("all to mediaSession.BeginGetEvent failed. Err=" + hr.ToString());

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::PrepareSessionAndTopology

It should be pointed out, in case it did not leap out at you in the code block above, that

the initial BeginGetEvent() call also registers the Callback Object in the Media Session

and from that point on the Media Session will send events to it. One of the most

important of these will be the MESessionTopologyStatus event. Among other things,

this event can tells us that the Pipeline has started – but that is a topic for another

chapter.

One final thing to note in the example Invoke function above is that the

BeginGetEvent() call is placed in a finally block. This enables us to cope with errors –

forgetting to enable the next event will effectively just lock up the Media Session.

// release the event we just processed

if (eventObj != null)

{

 Marshal.ReleaseComObject(eventObj);

}

As shown in the code block above, also note that the event object obtained from the

initial call to EndGetEvent() is released. Don’t forget to do things like this or you will

get memory leaks. The rule is “if you obtain an object from Windows Media Foundation

(however you do it) then you are responsible for cleaning it up”. Since you are new to

this, and likely a bit confused at the moment, also note that the meType variable is a

simple enum (of MediaEventType), not a COM object, and so does not need to be

released.

SOURCE READER AND SINK WRITER

Up to this point we have not talked very much about the components used in the

alternative Windows Media Foundation Reader-Writer or Hybrid Architectures. The

sections below which discuss the Source Reader and Sink Writer components will rectify

that.

It appears that the Source Reader and Sink Writer components were originally

introduced to provide media access to the Universal Windows Platform (UWP) API. UWP

is a technology provided by Microsoft which enables an application to be universally

executable on any platform on which Windows runs. In other words, you would write

your application once and then it will run on PC’s, tablets, phones and anything else

running Windows. As a “universal” program, the visual interface and internal

The WMF Components

136

components are expected to adapt to a wide range of environments. This “universal”

requirement has pretty serious consequences for a technology like the Media Session

and Pipeline which is highly specific to the PC Windows environment.

Clearly a Universal Windows Platform will require methods of media access – after all,

lots of people want to play or record videos on their phone. The WMF Pipeline

Architecture was thought to be far too complex to ever work on all platforms. So the

solution was to write a general, relatively easy to use, component which could act as a

source for media data and supply that information in a specified Media Type regardless

of the format a physical device might provide it in. This is, of course, is the Source

Reader. A similar requirement exists for an easy to use component which can write data

to a disk file in a specified format without regard to the Media Type in which the data

was supplied. The Sink Writer was created to fill that need.

The Source Reader and Sink Writer were introduced to fill

a specific need in the Universal Windows Platform

technology for media components that could supply or

sink a stream of data. In order to make things simple,

these components were also designed to contain a variety

of internal mechanisms which can automatically modify

the input or output data according to a specified Media

Type.

Since the Source Reader and Sink Writer exist on the Windows platform to support UWP

and they deal with complex media operations in a simple way, there is no real good

reason not to associate them with Windows Media Foundation. After all they use many

of the same technologies (such as Media Samples and Media Types), they are useful and

they can provide some interesting functionality which enhances the technology.

So, there really is a perfectly good explanation as to why the Source Reader and Sink

Writer are present in Windows Media Foundation even though they are so wildly

different than the rest of the architecture. One issue to be aware of is that, because the

Source Reader and Sink Writer components were relatively easy to use, people tended

to make them their first choice to solve their problems. This is a good thing since the

problems got solved, but a bad thing in that much of the sample code you may find on

the Internet implements just those two components. You will find many fewer examples

available which use the Media Session and Pipeline Architecture – although that

situation is changing somewhat now.

 The WMF Components

 137

USING THE SOURCE READER

The Source Reader is designed to interact with a device or file and provide you with a

stream of Media Samples containing Media Buffers with the raw data. The Source

Reader can support multiple streams so it is possible to have video and audio data

coming off the same file.

With the Source Reader you get a stream of media data in

the form of standard Media Samples - it is up to you to

deal with this data as you wish.

One common destination for the Source Reader data stream is to give it to a Sink Writer.

Thus it is possible to read from a video device (such as a webcam) and write that data to

a file. The TantaCaptureToFileViaReaderWriter Sample Project does exactly this. Note,

however, that your application could do anything with the data once the Source Reader

has handed it over - it does not have to immediately give it to a Sink Writer. For

example, your application could display the data on the screen or play it via audio. You

would have to write custom components for this though – there is no Microsoft

supplied Sink Writer component which can do either of these things. The Sink Writer

only writes to files.

On the PC platform, the Source Reader internally opens and maintains a standard WMF

Media Source. This is why, when you configure the Source Reader, things look slightly

similar (but not identical) to the way you would interact with a Media Source. In reality,

the Source Reader is just passing the operations through to its own internal Media

Source. This can be a source of frustration for people new to Windows Media

Foundation when they see one example program obtaining media data in a one way and

a second doing something completely different. In reality, one example of the sample

code is probably using a Media Source and the other is using a Source Reader – they are

not the same thing.

A Source Reader component is not a Media Source. It

offers the IMFSourceReader interface not the

IMFMediaSource interface. It cannot be used in a Pipeline

and the Media Session cannot work with it.

A Source Reader is an entirely standalone entity and is most useful in situations where

your application needs a simple way of getting a stream of data from a device or file. It

can sometimes be a viable alternative to using the Media Session and the Microsoft

The WMF Components

138

Media Foundation Pipeline to process media data. The Source Reader encapsulates a lot

of functionality you would otherwise need to handle yourself.

OBTAINING MEDIA SAMPLES FROM A SOURCE READER

Once the Source Reader has been configured, how do you get access to the media data?

Well, ultimately it is simple. Your application simply makes repeated calls to the

ReadSample() function on the IMFSourceReader interface. The following incomplete

code section shows this process.

// we sit in a loop here and get the sample from the source reader and write it out

// to the sink writer. An EOS (end of sample) value in the flags will signal the end.

while (true)

{

 int actualStreamIndex;

 MF_SOURCE_READER_FLAG actualStreamFlags;

 long timeStamp = 0;

 IMFSample workingMediaSample = null;

 // Request the next sample from the media source. Note that this could be

 // any type of media sample (video, audio, subtitles etc). We do not know

 // until we look at the stream ID. We saved the stream ID earlier when

 // we obtained the media types and so we can branch based on that.

 hr = sourceReader.ReadSample(

 TantaWMFUtils.MF_SOURCE_READER_ANY_STREAM,

 0,

 out actualStreamIndex,

 out actualStreamFlags,

 out timeStamp,

 out workingMediaSample

);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed on ReadSample, retVal=" + hr.ToString());

 }

... more code

Source: TantaVideoFileCopyViaReaderAndWriter::frmMain::CopyFile

The above code block is incomplete as it is rather lengthy and the part not displayed is

mostly associated with the detection of the end of the video stream. However,

particularly note that the ReadSample() function returns the ID of the stream it is

reading but not the IMFMediaStream object itself – that belongs to the internal Media

Source and is hidden. This is done because you may have opened up multiple streams

on the Source Reader and may have to handle the data in them differently. The stream

index (actualStreamIndex) allows you to direct the Media Sample to the correct

location. It would be a good idea to review the full code in the CopyFile function of the

TantaVideoFileCopyViaReaderAndWriter Sample Application to get a sense of how it

works.

SYNCHRONOUS VS ASYNCHRONOUS SOURCE READERS

If your application is sitting in a loop and repeatedly calling the ReadSample() then it is

likely that it will appear to be frozen or locked up to external users. From a design point

 The WMF Components

 139

of view this is rarely ok. Most of the time you want the ReadSample() processing to

continue in a separate thread so that the GUI of the application remains operational.

There are multiple ways of doing this in C# – not the least of which is placing the loop

code in a separate thread. However, recall that the Source Reader is designed for UWP

and so clearly something more generic was required. Thus the Asynchronous Source

Reader model was developed.

When the application obtains Media Samples directly from

the Source Reader, the Source Reader is said to be

operating in the Synchronous Mode. If a Callback Object

implementing the IMFSourceReaderCallback interface is

given to the Source Reader, then a call to ReadSample()

will trigger a call to a function in the Callback Object to

handle the processing of the Media Sample. The Callback

Object itself is expected to trigger the next the

ReadSample() call so that the process can continue. In this

mode the Source Reader is said to be operating

Asynchronously.

The Asynchronous Mode was designed to provide a simple method of processing the

Media Samples in a separate thread (and the Source Reader provides the thread). That

requirement is somewhat redundant in an environment like C#, which has ample multi-

threading capabilities of its own, but Asynchronous Mode is still used. In fact the

TantaCaptureToFileViaReaderWriter Sample Project implements this architecture for

reference purposes.

CREATING A SOURCE READER

There are three ways of creating a Source Reader. You can…

1. Create the Source Reader directly from a file name using the

static MFCreateSourceReaderFromURL function.

2. Create a Source Reader from an existing Media Source using the

static MFCreateSourceReaderFromMediaSource function.

3. Create a Source Reader from a byte stream using the static

MFCreateSourceReaderFromByteStream function.

The sections that follow will demonstrate the process of creating a Source Reader on a

file and on a device. The creation of a Source Reader from a byte stream will not be

The WMF Components

140

discussed. That particular technique is not commonly required and none of the Tanta

Sample Projects use it.

All of the methods of creating a Source Reader listed above are also applicable to the

creation of a Source Reader in Asynchronous Mode. The sole difference is that a

Callback Object is provided in the Attributes parameter in any of the

MFCreateSourceReaderFrom… static functions and you will get back an object

implementing the IMFSourceReaderAsync interface. Don’t worry, an

IMFSourceReaderAsync object is still an IMFSourceReader – the

IMFSourceReaderAsync interface inherits directly from the IMFSourceReader. You can

observe how the Callback Object is passed in as an Attribute in the Creating a Source

Reader on a File section below. It is not explicitly stated in the documentation (so it will

be stated here) that if you do not provide a Callback Object when the Source Reader is

created, then the Source Reader is, by default, a Synchronous Mode Source Reader.

CREATING A SOURCE READER ON A FILE

If you have a file, and have decided to use a Source Reader to process it, then a call to

the MFCreateSourceReaderFromURL function is the way to go. The

TantaVideoFileCopyViaReaderWriter Sample Project provides a full demonstration of

this and the sample code block below shows the creation process.

/// +=

/// <summary>

/// Opens the Source Reader object

/// </summary>

/// <param name="inFileName">the filename we write read from</param>

/// <param name="wantAllowHardwareTransforms">if true we allow hardware transforms</param>

/// <returns>a IMFSourceReader object or null for fail</returns>

/// <history>

/// 01 Nov 18 Cynic - Started

/// </history>

public static IMFSourceReader CreateSourceReaderSyncFromFile(string inputFileName,

 bool wantAllowHardwareTransforms)

{

 HResult hr;

 IMFSourceReader workingReader = null;

 IMFAttributes sourceReaderAttributes = null;

 if ((inputFileName == null) || (inputFileName.Length == 0))

 {

 // we failed

 throw new Exception("CreateSourceReaderSyncFromFile: Invalid filename specified");

 }

 try

 {

 // create the attribute container we use to create the source reader

 hr = MFExtern.MFCreateAttributes(out sourceReaderAttributes, 1);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed MFCreateAttributes, retVal=" + hr.ToString());

 }

 if (sourceReaderAttributes == null)

 {

 // we failed

 throw new Exception(": Failed to create Source Reader Attributes");

 }

 The WMF Components

 141

 hr = sourceReaderAttributes.SetUINT32(

 MFAttributesClsid.MF_READWRITE_ENABLE_HARDWARE_TRANSFORMS,

 wantAllowHardwareTransforms ? 1 : 0);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed on call to SetUINT32, retVal=" + hr.ToString());

 }

 // Create the SourceReader. This takes the URL of an input file

 // creates a media source internally.

 hr = MFExtern.MFCreateSourceReaderFromURL(inputFileName,

 sourceReaderAttributes, out workingReader);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed MFCreateSourceReaderFromURL, retVal=" + hr.ToString());

 }

 if (workingReader == null)

 {

 // we failed

 throw new Exception("Failed to create Source Reader");

 }

 }

 catch (Exception ex)

 {

 // note this clean up is in the Catch block not the finally block.

 // if there are no errors we return it to the caller. The caller

 // is expected to clean up after itself

 if (workingReader != null)

 {

 // clean up. Nothing else has this yet

 Marshal.ReleaseComObject(workingReader);

 workingReader = null;

 }

 workingReader = null;

 throw ex;

 }

 finally

 {

 if (sourceReaderAttributes != null)

 {

 Marshal.ReleaseComObject(sourceReaderAttributes);

 }

 }

 return workingReader;

}

Source: TantaCommon::TantaWMFUtils::CreateSourceReaderSyncFromFile

The creation process is quite straightforward really. Note that, in this particular

example, the function has the capability of setting an Attribute which enables or

disables the use of hardware transforms. The provision of this Attribute at creation time

is entirely optional and, if it is not present, a default will be assumed. The Source Reader

will automatically load hardware or software Transform objects (if it can) to ensure that

the media data it reads from the input file or device is output in the correct Media Type.

The Source Reader and Format Conversions section below discusses this topic in more

detail.

Just to emphasize, observe that in the above code block, no Callback Object was

provided and hence the Source Reader will operate in Synchronous Mode. This is why

the newly created object is returned as an IMFSourceReader.

The WMF Components

142

CREATING A SOURCE READER ON A DEVICE

If a Source Reader is to be created on a physical device the usual route is to create a

Media Source on the device and then generate a Source Reader from that. This is

usually the only time a Source Reader is generated from a Media Source. While it

certainly is possible to create a Source Reader from a Media Source when interacting

with a file – it is just a lot more cumbersome and most people don’t bother. Be aware

that you will sometimes see the Source Reader from a file Media Source technique used

in WMF example code available on the Internet – but none of the Tanta Samples will do

this.

The TantaCaptureToFileViaReaderWriter Sample Project creates a Source Reader from

a temporary Media Source based on a webcam physical device. This process is shown in

the code block below.

/// +=

/// <summary>

/// Opens the up a SourceReader in asynch mode.

///

/// NOTE: It is the callers responsibility to clean up and properly dispose

/// of the SourceReader object returned here.

///

/// </summary>

/// <param name="sourceDevice">the Device we use for the source</param>

/// <param name="asyncCallBackHandlerIn">the Callback Object for async mode</param>

/// <returns>an IMFSourceReaderAsync object or null for fail</returns>

/// <history>

/// 01 Nov 18 Cynic - Started

/// </history>

public static IMFSourceReaderAsync CreateSourceReaderAsyncFromDevice(

 TantaMFDevice sourceDevice,

 IMFSourceReaderCallback asyncCallBackHandlerIn)

{

 HResult hr = HResult.S_OK;

 IMFMediaSource mediaSource = null;

 IMFAttributes attributeContainer = null;

 if (sourceDevice == null)

 {

 throw new Exception(": Null source device specified. Cannot continue.");

 }

 if (asyncCallBackHandlerIn == null)

 {

 throw new Exception("asyncCallBackHandlerIn != null");

 }

 try

 {

 // use the device symbolic name to create the media source for the device.

 // Media sources are objects that generate media data.

 mediaSource = TantaWMFUtils.GetMediaSourceFromTantaDevice(sourceDevice);

 if (mediaSource == null)

 {

 throw new Exception("mediaSource == null. Cannot continue.");

 }

 // Initialize an attribute store. The 2 is the number of initial

 // attributes which can be stored

 hr = MFExtern.MFCreateAttributes(out attributeContainer, 2);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed MFCreateAttributes, retVal=" + hr.ToString());

 }

 // Set our Callback Object as an IUnknown pointer in the attribute container.

 hr = attributeContainer.SetUnknown(MFAttributesClsid.MF_SOURCE_READER_ASYNC_CALLBACK,

 The WMF Components

 143

 asyncCallBackHandlerIn);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed SetUnknown, retVal=" + hr.ToString());

 }

 // Create the SourceReader. We will no longer need our media source object

 // after this, the SourceReader will maintain its own pointer into it

 // and will clean it up properly when it is closed down.

 IMFSourceReader sourceReader;

 hr = MFExtern.MFCreateSourceReaderFromMediaSource(mediaSource,

 attributeContainer, out sourceReader);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed creating source reader, retVal=" + hr.ToString());

 }

 return (IMFSourceReaderAsync)sourceReader;

 }

 finally

 {

 // make sure we release the attribute memory

 if (attributeContainer != null)

 {

 Marshal.ReleaseComObject(attributeContainer);

 attributeContainer = null;

 }

 // close and release the source device

 if (mediaSource != null)

 {

 Marshal.ReleaseComObject(mediaSource);

 mediaSource = null;

 }

 }

}

Source: TantaCommon::TantaWMFUtils::CreateSourceReaderAsyncFromDevice

In the above code block a Callback Object was provided and hence the Source Reader

will operate in Asynchronous Mode and the newly created object is returned as an

IMFSourceReaderAsync. The Callback Object is provided as an Attribute. The

MF_SOURCE_READER_ASYNC_CALLBACK GUID is the key and the object itself is the

value. This is the purpose of the lines of code below…

hr = attributeContainer.SetUnknown(MFAttributesClsid.MF_SOURCE_READER_ASYNC_CALLBACK,

 asyncCallBackHandlerIn);

Also note the cast of returned value to an IMFSourceReaderAsync. The

MFCreateSourceReaderFromMediaSource static function always returns an

IMFSourceReader object even though it really is an IMFSourceReaderAsync.

THE SOURCE READER AND FORMAT CONVERSIONS

If you need to perform complex or custom operations on the media data (transform it)

or render it to a video or audio device, then you should probably use a Media Source

and the Pipeline Architecture.

Having said that, the Source Reader is perfectly prepared to convert media data from

one format to another if it can find the correct Transforms which will do the job. This is

what makes the Source Reader relatively easy to use – lots of things are done for you

automatically.

The WMF Components

144

The Transforms used are determined by the Media Type of the input data and the

Media Type you have specified for the output format. Their use entirely automatic,

internal to the Source Reader, and you have no control over them. For example, if the

underlying Media Source delivers compressed data, the Source Reader may well to need

to decode the data to match the specified output format. In that case, the Source

Reader will find and load the correct decoder and manage the data flow between the

Media Source and the decoder (internally it would act like a Media Session). The Source

Reader can also perform some limited video DSP type processing such as a conversion

from NV12 to YUV format and similar.

The process of configuring the Media Types on the Source Reader is discussed in the

Implementing the Reader-Writer Architecture section of the Practical WMF

Architectures chapter and so will not be reproduced here.

SINK WRITER

Given all the knowledge you now have from the sections above regarding the Source

Reader, you can probably guess where we are going with the Sink Writer. The Sink

Writer is pretty much an analogue of the Source Reader except that it writes out data

instead of sourcing it.

Similarly, the Sink Writer is not an IMFMediaSink – it implements the IMFSinkWriter

interface and maintains its own Media Sink internally. It will also load its own

Transforms, if it can, to automatically convert between the specified input format and

the format being written to disk. As mentioned previously, there is no Sink Writer which

renders data (video to the screen or audio to the speaker). The Sink Writer only

operates on files.

The Sink Writer exists only to consume data and write it to

a file on disk. Your application is required to provide this

data. The Sink Writer is incompatible with the Media

Session and Pipeline.

The Sink Writer is often teamed up with the Source Reader and, in such cases, your

application simply runs in a loop pulling the data off of the Source Reader and handing it

over to the Sink Writer. It should be emphasized that the use of a Source Reader to

provide data to the Sink Writer is optional. Your application could generate the data

(perhaps it is an animation application) or it could implement a Media Session and

Pipeline which has a special component (the Sample Grabber Sink) which copies the

 The WMF Components

 145

Media Samples as they pass through and gives them to the Sink Writer. In that case you

will have implemented the Hybrid Architecture. Note that the use of a Sink Writer in a

Hybrid Architecture does not imply that the Sink Writer is part of the Pipeline - it is not.

The Sink Writer is still very much outside the Pipeline and is simply being manually

provided with Media Samples by a Pipeline object.

Be aware that there is no concept of a synchronous or asynchronous Sink Writer – those

are purely Source Reader concepts. All Sink Writers are effectively synchronous.

PROVIDING MEDIA SAMPLES TO A SINK WRITER

Once you have the Media Sample, then writing the data out to the Sink Writer is a

pretty straightforward process. You just call the WriteSample() function on the

IMFSinkWriter interface. Of course, there is more to it than that though. A proper Sink

Writer loop needs to perform specific actions on the first Media Sample written to the

Media Sink. It also needs to watch for signals which indicate the stream is complete -

otherwise the loop would be endless and the output file would not get shutdown

properly. The code section below shows a part of a loop which writes Media Samples to

a Sink Writer.

// the sample may be null if either end of stream or a stream tick is returned

if (workingMediaSample == null)

{

 // just ignore, the flags will have the information we need.

}

else

{

 // the sample is not null

 if (actualStreamIndex == sourceReaderAudioStreamId)

 {

 // audio data

 // ensure discontinuity is set for the first sample in each stream

 if (audioSamplesProcessed == 0)

 {

 // audio data

 hr = workingMediaSample.SetUINT32(

 MFAttributesClsid.MFSampleExtension_Discontinuity, 1);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed SetUINT32 on the sample, retVal=" + hr.ToString());

 }

 // remember this - we only do it once

 audioSamplesProcessed++;

 }

 hr = sinkWriter.WriteSample(sinkWriterOutputAudioStreamId, workingMediaSample);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed WriteSample on the writer, retVal=" + hr.ToString());

 }

 }

 // release the sample

 if (workingMediaSample != null)

 {

 Marshal.ReleaseComObject(workingMediaSample);

 workingMediaSample = null;

 }

}

Source: TantaAudioFileCopyViaReaderWriter::frmMain::CopyFile

The WMF Components

146

The first thing to note is that the Media Sample can be null. In the above sample code,

the Media Samples are being generated by a Source Reader. Besides the Media Sample,

the read of the data on a Source Reader returns a set of flags and the Stream ID. If the

stream is at an end (no more data) then the Media Sample will be null and the flags will

indicate the event status.

If a non-null Media Sample is present, the actualStreamIndex value is checked to see if

it matches the index of the audio stream. This stream ID will also have been returned

when the Media Sample is read. If only one stream has been opened, then this check is

somewhat redundant – every Media Sample will be on the single open stream. It is

possible for there to be multiple streams though (see the

TantaVideoFileCopyViaReaderWriter Sample Project).

The other major check is for the first Media Sample on the stream. The Sink Writer (or

rather more likely the internal Media Sink) expects a “Discontinuity” flag to be set for

the very first Media Sample it sees. It needs this to trigger some internal set-up for the

data. As you can see, the Discontinuity Flag is set as an Attribute on the Media Sample

itself.

hr = workingMediaSample.SetUINT32(MFAttributesClsid.MFSampleExtension_Discontinuity, 1);

If there are multiple streams, be sure to check for and set the Discontinuity flag on the

first Media Sample in each stream.

The actual write of the Media Sample is just a simple call to the WriteSample()

function.

hr = sinkWriter.WriteSample(sinkWriterOutputAudioStreamId, workingMediaSample);

Note that the ID of the stream is also passed in on this call. In some Internet example

code you will sometimes see this value hard coded to 0. This is not really a good practice

as it assumes there will never be more than one output stream on the Sink Writer.

CREATING A SINK WRITER

There are two ways of creating a Sink Writer. You can…

1. Create the Sink Writer directly from a file name using the static

MFCreateSinkWriterFromURL function.

2. Create a Sink Writer from an existing Media Sink using the static

MFCreateSinkWriterFromMediaSink function.

In reality, the requirement to create a Sink Writer from a Media Sink is a pretty rare

occurrence. Since the Sink Writer only operates on files and the

 The WMF Components

 147

MFCreateSinkWriterFromURL function is so much easier to use, everybody pretty much

does it that way. You may see the odd example on the Internet doing it the hard way

but none of the Tanta Sample Projects do so. The MFCreateSinkWriterFromMediaSink

mechanism will not be discussed in this book.

It should be noted that the MFCreateSinkWriterFromURL function can also accept a

pointer to a byte stream – so it is also useful for transporting media data by that

mechanism.

CREATING A SINK WRITER ON A FILE

The sample code block below clipped from the TantaAudioFileCopyViaReaderWriter

Sample Project demonstrates the process of creating a Sink Writer on a file.

/// +=

/// <summary>

/// Opens the Sink Writer object

/// </summary>

/// <param name="outputFileName">the filename we write out to</param>

/// <param name="wantAllowHardwareTransforms">if true we allow hardware transforms</param>

/// <returns>an IMFSinkWriter object or null for fail</returns>

/// <history>

/// 01 Nov 18 Cynic - Started

/// </history>

public static IMFSinkWriter CreateSinkWriterFromFile(string outputFileName,

 bool wantAllowHardwareTransforms)

{

 HResult hr;

 IMFSinkWriter workingWriter = null;

 IMFAttributes sinkWriterAttributes = null;

 if ((outputFileName == null) || (outputFileName.Length == 0))

 {

 // we failed

 throw new Exception("CreateSinkWriterFromFile: Invalid filename specified");

 }

 try

 {

 // create the attribute container we use to create the source reader

 hr = MFExtern.MFCreateAttributes(out sinkWriterAttributes, 1);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed MFCreateAttributes, retVal=" + hr.ToString());

 }

 if (sinkWriterAttributes == null)

 {

 // we failed

 throw new Exception("Failed on Attributes, Nothing will work.");

 }

 hr = sinkWriterAttributes.SetUINT32(

 MFAttributesClsid.MF_READWRITE_ENABLE_HARDWARE_TRANSFORMS,

 wantAllowHardwareTransforms ? 1 : 0);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed on call to SetUINT32, retVal=" + hr.ToString());

 }

 // Create the sink writer. This takes the URL of an output file or a pointer

 // to a byte stream and creates the media sink internally. You could also

 // use the more round-about MFCreateSinkWriterFromMediaSink which takes a

 // pointer to a media sink that has already been created by the application.

 // If you are using one of the built-in media sinks, the MFCreateSinkWriterFromURL

 // function is preferable, because the caller does not need to configure

 // the media sink.

 hr = MFExtern.MFCreateSinkWriterFromURL(outputFileName, null,

The WMF Components

148

 sinkWriterAttributes, out workingWriter);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed MFCreateSinkWriterFromURL, retVal=" + hr.ToString());

 }

 if (workingWriter == null)

 {

 // we failed

 throw new Exception("Failed to create Sink Writer, Nothing will work.");

 }

 }

 catch (Exception ex)

 {

 // note this clean up is in the Catch block not the finally block.

 // if there are no errors we return it to the caller. The caller

 // is expected to clean up after itself

 if (workingWriter != null)

 {

 // clean up. Nothing else has this yet

 Marshal.ReleaseComObject(workingWriter);

 workingWriter = null;

 }

 workingWriter = null;

 throw ex;

 }

 finally

 {

 if (sinkWriterAttributes != null)

 {

 Marshal.ReleaseComObject(sinkWriterAttributes);

 }

 }

 return workingWriter;

}

Source: TantaCommon::TantaWMFUtils::CreateSinkWriterFromFile

The code above is pretty straight-forward and is easy to follow. The only oddity is that

this particular function also has a flag to enable or disable hardware Transforms.

hr = sinkWriterAttributes.SetUINT32(MFAttributesClsid.MF_READWRITE_ENABLE_HARDWARE_TRANSFORMS,

 wantAllowHardwareTransforms ? 1 : 0);

As with the Source Reader, the provision of this Attribute at creation time is entirely

optional and if it is not present a default will be assumed. The Sink Writer will

automatically load hardware or software Transform objects (if it can) to ensure that the

media data it accepts on its input is converted to the correct format on the output file

according to the configured Media Type. The Sink Writer and Format Conversions

section below discusses this topic in more detail.

One important point to note, which is not referenced in the above code blocks, is that a

call to the BeginWriting() function of the Sink Writer must be made before any data is

given to it with a WriteSample() call.

// begin writing on the sink writer

hr = sinkWriter.BeginWriting();

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("CopyFile: failed on call to BeginWriting, retVal=" + hr.ToString());

}

Source: TantaAudioFileCopyViaReaderWriter::frmMain::CopyFile

 The WMF Components

 149

The BeginWriting() call must be made after the input streams are configured but

before the any data is sent to the Sink Writer. You will see this in use when the full

Reader-Writer Architecture is discussed in the Implementing the Reader-Writer

Architecture section of the Practical WMF Architectures chapter.

THE SINK WRITER AND FORMAT CONVERSIONS

The Sink Writer is designed to be simple to use. You tell it the Media Type of the data

you are giving it and you tell it the Media Type of the data you wish to have written to

the output file. The Sink Writer will automatically convert the input media data for you if

it can find the correct Transforms which will do the job.

Like the Source Reader, the Transforms used by the Sink Writer are determined by the

Media Type of the input data and the Media Type you have specified for the output

format. Their use is entirely automatic, internal to the Sink Writer, and you have no

control over them.

The process of configuring the Media Types on the Sink Writer is discussed in the

Implementing the Reader-Writer Architecture section of the Practical WMF

Architectures chapter and so will not be reproduced here.

 150

Windows Media Foundation:
Getting Started in C#

Chapter 6

WMF – FIRST CONTACT
In this section we will make the first contact with a full Windows Media Foundation

application – previous to this the only examples you have seen were short code sections

illustrating various WMF concepts.

The discussion in this section revolves around the TantaVideoFormats Sample

Application which is designed to enumerate the Video Capture Devices (webcams) on

the system and allow the user to choose one. In addition, the application will dig into

the selected Video Capture Device and display the many Media Types and formats

offered by each.

For those of you whose first language is not English, strictly speaking, “enumerate”

means “to count”. However, when used in the programming sense, it usually means

“find all of” or “look at each one of”.

This chapter will make use of the WMF tools (Interfaces, Attributes, HResults and GUIDs

etc.) discussed in the MF.Net Programming Fundamentals chapter. It will also make

extensive use of some of the concepts (Media Source, Media Streams, Media Types etc.)

which you encountered in The WMF Components chapter If you are not familiar with

any of those items you should probably review the relevant chapter now.

 WMF – First Contact

 151

THE TANTAVIDEOFORMATS SAMPLE APPLICATION

In the discussion that follows, the TantaVideoFormats sample application will be used to

demonstrate the required concepts. The full source code for this application, including a

C# solution, is available for download – see the discussion in The Tanta Sample Code

appendix for more details.

Here is a general overview of what is going to happen…

1. All of the functionality will take place within a control named

ctlTantaVideoPicker. This permits other applications to simply

drop that control onto a form in order to offer the ability to

“pick” a Video Capture Device and select a format from those on

offer by that device.

2. The Video Capture Devices on the system will be enumerated on

application startup and the list of the names of those devices will

be used to populate a dropdown combo box on the control.

3. The first Video Capture Device in the list will be the default, but

the user can pick a different device if they wish.

4. When the user picks a device, a temporary Media Source will be

built on that device.

5. The Media Source will provide a Presentation Descriptor.

6. The Presentation Descriptor can be enumerated to find a list of

the Media Streams on offer.

7. The first Media Stream with a Media Major Type of “video” will

be chosen. In order to keep things simple, this application

ignores other Media Streams.

8. A Media Type Handler will be obtained on the first video Media

Stream.

9. The Media Type Handler will be used to enumerate the Media

Types offered by the stream.

10. Information on each Media Type will be stored in a container

and the Media Type will be released.

11. The containers of media type information will collected in a list.

12. The list of media type information will be presented to the user

in a ListView from which they can select a format.

This approach has the advantage of introducing many of Windows Media Foundation

concepts in a fairly simple way. Ok, let’s be realistic, if you are new to WMF

programming it probably will not look all that simple to you. In reality though, it is just a

WMF – First Contact

152

sequence of logical steps – none of which are particularly complex. You may wish to

take some comfort from the fact that your first attempt at WMF programming does not

involve setting up a Pipeline and Topology and that the concepts you learn in this

section will actually be of considerable use later on.

THE VIDEO PICKER CONTROL

Since the discovery of video source devices and their capabilities is a useful thing, the

code for this operation has been embedded into a control named ctlTantaVideoPicker

in the TantaCommon library so that it can be re-used by other applications.

The ctlTantaVideoPicker control is designed to be easily placed on the screen to

provide a “pick-list” of device and format options for the user. The TantaVideoFormats

application does not do anything with the picked options – it just displays them. This is

just fine for our purposes since, at this

point, we are much more interested in

how to obtain this information rather

than how to use it once we do have it.

As you look at the other Tanta Sample

Projects, you will find that several of

them use the ctlTantaVideoPicker

control to enable the user to select a

video device and format. The

ctlTantaVideoPicker control will not

be discussed in those sections.

Like all C# form based programs, the main form for the TantaVideoFormats sample

application is launched from the Main() function in the Program.cs file. Note that the

Main() function in the project is decorated with the [MTAThread] tag. This is not

obvious and [STAThread] is the default. If you leave the [STAThread] tag in place,

pretty much nothing will work and you will not get a sensible error message explaining

why.

IMPORTANT: Always use an [MTAThread] tag just above

your Main() function when using Windows Media

Foundation. If you do not do this then very little else will

work.

Figure 6.1: The TantaVideoFormats Sample Application

 WMF – First Contact

 153

If you need a more in-depth discussion of reasons for this then review the You must use

an [MTAThread] Code Decoration section in the MF.Net Programming Fundamentals

chapter. The code for the Main() function of the TantaVideoFormats application is

shown below.

/// <summary>

/// The main entry point for the application.

/// </summary>

///

///

// SUPER IMPORTANT NOTE: You MUST use [MTAThread] here. If you use [STAThread] you

// will get the following error

// Unable to cast COM object of type 'System.__ComObject' to interface type

// 'MediaFoundation.Alt.IMFSourceReaderAsync'. This operation failed because the

// QueryInterface call on the COM component for the interface with IID

// '{70AE66F2-C809-4E4F-8915-BDCB406B7993}' failed due to the following error: No such

// interface supported (Exception from HRESULT: 0x80004002 (E_NOINTERFACE)).

[MTAThread]

static void Main()

{

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 Application.Run(new frmMain());

}

Source: TantaVideoFormats::Main

The constructor for the TantaVideoFormat sample application main form starts off with

the configuration of the standard Tanta sample application logging substrate and the

only other operation of consequence it performs is to initialize Windows Media

Foundation. This is absolutely necessary.

// we always have to initialize MF. The 0x00020070 here is the WMF version

// number used by the MF.Net samples. Not entirely sure if it is appropriate

hr = MFExtern.MFStartup(0x00020070, MFStartup.Full);

if (hr != 0)

{

 LogMessage("Constructor: call to MFExtern.MFStartup returned " + hr.ToString());

}

Source: TantaVideoFormats::frmMain::frmMain

It is the frmMain_Load() event, triggered when the form is fully available, that initiates

the process of obtaining the Video Capture Device information.

private void frmMain_Load(object sender, EventArgs e)

{

 LogMessage("frmMain_Load");

 ctlTantaVideoPicker1.DisplayVideoCaptureDevices();

}

Source: TantaVideoFormats::frmMain::frmMain_Load

As can be seen in the above code section, the call to the the

DisplayVideoCaptureDevices() function in the ctlTantaVideoPicker1 control

transfers the thread of execution into that object and it is there that the real work is

performed. It is to this sequence of code that we will now turn our attention. The

contents of the DisplayVideoCaptureDevices() member function is shown in a future

section (after a short digression).

WMF – First Contact

154

For completeness it should also be noted that the frmMain_Closing() handler is

automatically invoked to deal with the shutdown of MF.Net when the application closes.

That function also calls, as all Tanta Sample Applications do, the

CloseAllMediaDevices() function - although in this particular case there is nothing

that needs to be done.

private void frmMain_FormClosing(object sender, FormClosingEventArgs e)

{

 LogMessage("frmMain_FormClosing");

 try

 {

 // do everything to close all media devices

 CloseAllMediaDevices();

 // Shut down WMF

 MFExtern.MFShutdown();

 }

 catch

 {

 }

}

Source: TantaVideoFormats::frmMain::frmMain_Closing

Important though it is, this is the last time we are going to mention the need to use and

[STAThread] in your WMF applications, WMF initialization and WMF shutdown. From

now on you should simply assume that every Tanta Sample Application implements

these (because they all do).

ENUMERATING THE VIDEO CAPTURE DEVICES

A Windows system on a modern laptop computer will typically have one Video Capture

Device – this is usually the built-in camera, however, a computer can have multiple

devices or none at all. If there are multiple Video Capture Devices, usually at least one is

a plug-in USB video camera. In Windows Media Foundation it does not matter if the

Video Capture Device is built-in or is a plug-in via USB - the treatment of the device is

identical. WMF interacts with the device driver via standard protocols and physical

characteristics of the device connection are largely abstracted away.

As mentioned previously, the process of enumerating the devices on the system has

been split into two parts. The first part is a call to the DisplayVideoCaptureDevices()

member function which, after calling the GetDevicesByCategory() static function,

simply populates a combo box with the returned list of the Video Capture Devices.

public void DisplayVideoCaptureDevices()

{

 StringBuilder sb = new StringBuilder();

 // Query MF for the devices, can also use MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_AUDCAP_GUID

 // here to see the audio capture devices

 List<TantaMFDevice> vcDevices = TantaWMFUtils.GetDevicesByCategory(

 MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE,

 CLSID.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_GUID);

 if (vcDevices == null) return;

 WMF – First Contact

 155

 foreach (TantaMFDevice mfDevice in vcDevices)

 {

 sb.Append("FriendlyName:" + mfDevice.FriendlyName);

 sb.Append("\r\n");

 sb.Append("Symbolic Name:" + mfDevice.SymbolicName);

 sb.Append("\r\n");

 sb.Append("\r\n");

 }

 // add all known devices

 comboBoxCaptureDevices.DataSource = vcDevices;

}

Source: TantaCommon::ctlTantaVideoPicker::DisplayVideoCaptureDevices

The actual acquisition of the Video Capture Devices on the system is a pretty straight

forward procedure. It is the subsequent examination of the contents of that device and

its multiple capabilities that gets somewhat intricate.

When we enumerate a device on the system we do not actually get the device object

itself, what we receive is an object, called an Activator (see the WMF Object Creation is

Indirect section in the MF.Net Programming Fundamentals chapter for more

information), that knows how to create the enumerated device. We could use the

Activator to build the object immediately – and, indeed, many of the WMF sample

programs do exactly that. However, we want the user to be able to pick from multiple

devices and so what we will do is extract two text tags from the Activator and once we

have these values, we release the Activator. We can always acquire a new Activator for

a specific device later using the label tags.

One tag is known as the “Friendly Name” and it is just a text string suitable for display to

the user. The other tag is called the “Symbolic Name” and it is effectively a link or

registry address which tells WMF and the COM layer how to find the dedicated Activator

for the device should it be necessary. Since there can be multiple devices on any one

system, the two tags are stored in the TantaMFDevice class. All this class really does is act

as a container to keep the Friendly Name and Symbolic Name for a device together so

they can be easily be passed around the system without losing the association between

the two.

It is the call to the static GetDevicesByCategory() function in the TantaWMFUtils class

that really does the work and we shall examine that method shortly. For now, have a

look back at the previous source code section and note that the two parameters to the

DisplayVideoCaptureDevices() member function call are the GUID

MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE and the GUID

CLSID.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_GUID. The relevant section

of code is shown below.

List<TantaMFDevice> vcDevices = TantaWMFUtils.GetDevicesByCategory(

 MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE,

 CLSID.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_GUID);

WMF – First Contact

156

If you recall the much earlier discussion on the usage of GUID values, you will realize

that these two parameters are just keys to tell WMF which information is required. In

this case all we are really saying is “look among the source devices” and “we want video

capture devices”. We could just as well have passed in the

MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_AUDCAP_GUID GUID and retrieved a list of

audio source devices (microphones).

In any event, the GetDevicesByCategory() function is just a wrapper for the multi-

step process of configuring the request to enumerate the specified devices. The source

code for this function is listed below. Remember that Windows Media Foundation code

always looks a lot more complicated than it really is. The steps in the code section

below, if performed in a more typical C# fashion, would probably be achieved in about

six lines of code.

public static List<TantaMFDevice> GetDevicesByCategory(Guid attributeType, Guid filterCategory)

{

 // our return value

 List<TantaMFDevice> outList = new List<TantaMFDevice>();

 IMFActivate[] deviceArr;

 int numDevices=0;

 HResult hr = 0;

 IMFAttributes attributeContainer = null;

 try

 {

 // Initialize an attribute store. We will use this to

 // specify the enumeration parameters.

 hr = MFExtern.MFCreateAttributes(out attributeContainer, 1);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed on call to MFCreateAttributes");

 }

 if (attributeContainer == null)

 {

 // we failed

 throw new Exception("attributeContainer == MFAttributesClsid.null");

 }

 // populate the attribute container

 hr = attributeContainer.SetGUID(attributeType, filterCategory);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed setting up the attributes, retVal=" + hr.ToString());

 }

 // Enumerate the devices.

 hr = MFExtern.MFEnumDeviceSources(attributeContainer, out deviceArr, out numDevices);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed on call to MFEnumDeviceSources");

 }

 if (deviceArr == null)

 {

 // we failed

 throw new Exception("deviceArr == MFAttributesClsid.null");

 }

 // add the devices to our list as TantaMFDevices

 for (int i = 0; i < numDevices; i++)

 {

 // extract the friendlyName and symbolicLinkName

 string symbolicLinkName = GetStringForKeyFromActivator(

 deviceArr[i],

 MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_SYMBOLIC_LINK);

 WMF – First Contact

 157

 string friendlyName = GetStringForKeyFromActivator(

 deviceArr[i],

 MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_FRIENDLY_NAME);

 // create the new TantaMFDevice

 outList.Add(new TantaMFDevice(friendlyName, symbolicLinkName,

 filterCategory));

 // clean up our activator

 Marshal.ReleaseComObject(deviceArr[i]);

 }

 }

 finally

 {

 // make sure we release the attribute memory

 if (attributeContainer != null)

 {

 Marshal.ReleaseComObject(attributeContainer);

 }

 }

 return outList;

}

Source: TantaCommon::TantaWMFUtils::GetDevicesByCategory

Recall that, ultimately, the point of all the above code is to get a list of devices from

Windows Media Foundation. Before we can do that, we have to tell WMF which devices

we wish to have. In this case, the type of the devices we wish to look at are supplied as

parameters to the GetDevicesByCategory() function call. These two parameters are

the two GUID values discussed earlier and they actually form a key-value pair. In other

words, they are an Attribute. In order to pass information in to WMF we need to

formally load that information into an IMFAttributes container since most WMF

functions will not accept a key-value pair as parameters. So we first make a container to

hold our Attribute data, then we populate the Attribute container with our GUID key-

value pair and then we pass that container in as a parameter on the

MFEnumDeviceSources call.

// Initialize an attribute container

hr = MFExtern.MFCreateAttributes(out attributeContainer, 1);

// populate the attribute container

hr = attributeContainer.SetGUID(attributeType, filterCategory);

Thus, all we are really doing in the first three groups of code, is building a container for

the Attribute (the MFCreateAttributes() call) and then setting the GUIDs in that

container as an Attribute key-value pair (the SetGUID() call). Of course, including

comments and error checking, this takes twenty lines of code – but don’t worry about

that too much. Once you get the hang of it you will soon not notice the verbosity.

// Enumerate the devices.

hr = MFExtern.MFEnumDeviceSources(attributeContainer, out deviceArr, out numDevices);

Once we have the populated our attribute container, a simple call to the

MFEnumDeviceSources static function provides us with the appropriate list of devices.

These devices are returned to us in the deviceArr variable as an array of Activator

objects (an IMFActivate[]). At that point it is a simple matter to sit in a for loop and

WMF – First Contact

158

extract both the Friendly Name and Symbolic Name for the device from the Activator

object and store those tags in a TantaMFDevice class.

// clean up our activator

Marshal.ReleaseComObject(deviceArr[i]);

In particular, note how the Activator object is released inside the for loop with a call to

Marshal.ReleaseComObject(). It is very important to do this or you will get a memory

leak - the documentation does mention it as well. If you were keeping the Activator

around you would have to remember to release it later or you would get the same

problem.

In addition, note how the IMFAttributes container (the attributeContainer

variable) is also released in the finally block. This is typical of Windows Media

Foundation. If WMF retains the attribute container internally it will add a reference and

release it itself. Thus there is a firm rule that if you create a WMF object, you are

responsible for releasing it as well. Note that getting an array of Activators from the

MFEnumDeviceSources function also counts as creating them. After all, Windows Media

Foundation has no idea when or where you might need to release those Activator

objects so it is up to you to do so.

While we are on the subject of releasing things, note that the strings containing the

Friendly Name and Symbolic Name do not have to be released. The act of digging it out

of the Activator copied it into a proper C# string and releasing the Activator will take

care of the original.

public static string GetStringForKeyFromActivator(IMFActivate activatorContainer, Guid guidKey)

{

 string allocatedStr = "";

 HResult hr = 0;

 int iSize = 0;

 if (activatorContainer == null) return "";

 // get it now.

 hr = activatorContainer.GetAllocatedString(

 guidKey,

 out allocatedStr,

 out iSize

);

 if (hr != HResult.S_OK) return "";

 // sanity check

 if (allocatedStr == null) allocatedStr = "";

 return allocatedStr;

}

Source: TantaCommon::TantaWMFUtils::GetStringForKeyFromActivator

Before we proceed onto other things, we should probably discuss the contents of the

GetStringForKeyFromActivator function. This call is the one we use to fetch the

Friendly Name and Symbolic Name from the Activator. This function is, as can readily be

seen in Figure 6.2, just a simple wrapper for a call to the Activators

 WMF – First Contact

 159

GetAllocatedString call. This static utility function just avoids the need to place two

copies inline in the

for loop of the
GetDevicesByCatego

ry() function

Now that we have a

list of all the Video

Capture Devices on

the system we can offer them to the user as a choice. This is exactly what the

ctlTantaVideoPicker control does – it takes the list returned by the

DisplayVideoCaptureDevices() function and populates a drop down ComboBox

control with them.

ENUMERATING THE ATTRIBUTES OF A VIDEO DEVICE

Most Video Capture Devices will offer a multitude of Media Types and formats for the

video stream they produce. At this point, if the user were to use the only Video Capture

Device information to set up a Media Stream, they would probably just get the first

Media Type and format on offer and this would most likely be a fairly low quality generic

default choice. There is no reason why we should limit the user to that option. We can

further interrogate each Video Capture Device to find out all the Media Types and

options it offers. Once we have those options, we can present them in a nice list and

then then let the user choose from amongst them.

In the ctlTantaVideoPicker control, the act of picking the Video Capture Device in the

dropdown ComboBox initiates the process of discovering the video formats associated

with that particular device. This process is driven out of the

comboBoxCaptureDevices_SelectedIndexChanged method in the

ctlTantaVideoPicker1 control. That code will not be reproduced here since all it really

does is call the DisplayVideoFormatsForCurrentCaptureDevice() function which

does the real work of obtaining the Media Type and format data for the current Video

Capture Device and displaying it in a standard ListView control. This function is show in

the code section below – it is rather lengthy – but it does do all of the rest of the work in

the application.

private void DisplayVideoFormatsForCurrentCaptureDevice()

{

 IMFPresentationDescriptor sourcePresentationDescriptor = null;

 int sourceStreamCount = 0;

 bool streamIsSelected = false;

 IMFStreamDescriptor videoStreamDescriptor = null;

 IMFMediaTypeHandler typeHandler = null;

Figure 6.2: The Video Capture Devices Dropdown ComboBox

WMF – First Contact

160

 int mediaTypeCount = 0;

 List<TantaMFVideoFormatContainer> formatList = new List<TantaMFVideoFormatContainer>();

 HResult hr;

 IMFMediaSource mediaSource = null;

 try

 {

 // clear what we have now

 listViewSupportedFormats.Clear();

 // reset this

 listViewSupportedFormats.ListViewItemSorter = null;

 // get the currently selected device

 TantaMFDevice currentDevice = (TantaMFDevice)comboBoxCaptureDevices.SelectedItem;

 if (currentDevice == null)

 {

 throw new Exception("currentDevice == null");

 }

 // use the device symbolic name to create the media source for the video

 // device. Media sources are objects that generate media data.

 // For example, the data might come from a video file, a network stream,

 // or a hardware device, such as a camera. Each media source contains one

 // or more streams, and each stream delivers data of one type, such as audio or video.

 mediaSource = TantaWMFUtils.GetMediaSourceFromTantaDevice(currentDevice);

 if (mediaSource == null)

 {

 throw new Exception("call to mediaSource == null");

 }

 // A presentation is a set of related media streams that share a

 // common presentation time. we don't need that functionality in

 // this app but we do need to presentation descriptor to find out

 // the stream descriptors, these will give us the media types on offer

 hr = mediaSource.CreatePresentationDescriptor(out sourcePresentationDescriptor);

 if (hr != HResult.S_OK)

 {

 throw new Exception("CreatePresentationDescriptor failed. Err=" + hr.ToString());

 }

 if (sourcePresentationDescriptor == null)

 {

 throw new Exception("failed, sourcePresentationDescriptor == null");

 }

 // Now we get the number of stream descriptors in the presentation.

 // A presentation descriptor contains a list of one or more

 // stream descriptors.

 hr = sourcePresentationDescriptor.GetStreamDescriptorCount(out sourceStreamCount);

 if (hr != HResult.S_OK)

 {

 throw new Exception("GetStreamDescriptorCount failed. Err=" + hr.ToString());

 }

 if (sourceStreamCount == 0)

 {

 throw new Exception("GetStreamDescriptorCount failed. sourceStreamCount == 0");

 }

 // look for the video stream

 for (int i = 0; i < sourceStreamCount; i++)

 {

 // we require the major type to be video

 Guid guidMajorType = TantaWMFUtils.GetMajorMediaTypeFromPresentationDescriptor(

 sourcePresentationDescriptor, i);

 if (guidMajorType != MFMediaType.Video) continue;

 // we also require the stream to be enabled

 hr = sourcePresentationDescriptor.GetStreamDescriptorByIndex(i,

 out streamIsSelected, out videoStreamDescriptor);

 if (hr != HResult.S_OK)

 {

 throw new Exception("GetStreamDescriptor) failed. Err=" + hr.ToString());

 }

 if (videoStreamDescriptor == null)

 {

 throw new Exception("failed. videoStreamDescriptor == null");

 }

 // if the stream is not selected (enabled) look for the next

 if (streamIsSelected == false)

 {

 Marshal.ReleaseComObject(videoStreamDescriptor);

 WMF – First Contact

 161

 videoStreamDescriptor = null;

 continue;

 }

 // Get the media type handler for the stream. IMFMediaTypeHandler

 // interface is a standard way of looking at the media types on an object

 hr = videoStreamDescriptor.GetMediaTypeHandler(out typeHandler);

 if (hr != HResult.S_OK)

 {

 throw new Exception("GetMediaTypeHandler failed. Err=" + hr.ToString());

 }

 if (typeHandler == null)

 {

 throw new Exception("GetMediaTypeHandler failed. typeHandler == null");

 }

 // Now we get the number of media types in the stream descriptor.

 hr = typeHandler.GetMediaTypeCount(out mediaTypeCount);

 if (hr != HResult.S_OK)

 {

 throw new Exception("GetMediaTypeCount failed. Err=" + hr.ToString());

 }

 if (mediaTypeCount == 0)

 {

 throw new Exception("GetMediaTypeCount failed. mediaTypeCount == 0");

 }

 // now loop through each media type

 for (int mediaTypeId = 0; mediaTypeId < mediaTypeCount; mediaTypeId++)

 {

 // Now we have the handler, get the media type.

 IMFMediaType workingMediaType = null;

 hr = typeHandler.GetMediaTypeByIndex(mediaTypeId, out workingMediaType);

 if (hr != HResult.S_OK)

 {

 throw new Exception("GetMediaTypeByIndex failed. Err=" + hr.ToString());

 }

 if (workingMediaType == null)

 {

 throw new Exception("workingMediaType == null");

 }

 TantaMFVideoFormatContainer tmpContainer =

 TantaMediaTypeInfo.GetVideoFormatContainerFromMediaTypeObject(

 workingMediaType, currentDevice);

 if (tmpContainer == null)

 {

 // we failed

 throw new Exception("failed tmpContainer == null");

 }

 // now add it

 formatList.Add(tmpContainer);

 Marshal.ReleaseComObject(workingMediaType);

 workingMediaType = null;

 }

 // NOTE: we only do the first enabled video stream we find.

 // it is possible to have more but our control

 // cannot cope with that

 break;

 }

 // now display the formats

 foreach (TantaMFVideoFormatContainer videoFormat in formatList)

 {

 ListViewItem lvi = new ListViewItem(new[]

 { videoFormat.SubTypeAsString,

 videoFormat.FrameSizeAsString,

 videoFormat.FrameRateAsString,

 videoFormat.FrameRateMaxAsString, videoFormat.AllAttributes

 });

 lvi.Tag = videoFormat;

 listViewSupportedFormats.Items.Add(lvi);

 }

 listViewSupportedFormats.Columns.Add("Type", 70);

 listViewSupportedFormats.Columns.Add("FrameSize WxH", 100);

 listViewSupportedFormats.Columns.Add("FrameRate f/s", 100);

 listViewSupportedFormats.Columns.Add("FrameRateMax f/s", 100);

 listViewSupportedFormats.Columns.Add("All Attributes", 2500);

 }

 finally

 {

WMF – First Contact

162

 // close and release

 if (mediaSource != null)

 {

 Marshal.ReleaseComObject(mediaSource);

 mediaSource = null;

 }

 if (sourcePresentationDescriptor != null)

 {

 Marshal.ReleaseComObject(sourcePresentationDescriptor);

 sourcePresentationDescriptor = null;

 }

 if (videoStreamDescriptor != null)

 {

 Marshal.ReleaseComObject(videoStreamDescriptor);

 videoStreamDescriptor = null;

 }

 if (typeHandler != null)

 {

 Marshal.ReleaseComObject(typeHandler);

 typeHandler = null;

 }

 }

}

Source: TantaCommon::ctlTantaVideoPicker::DisplayVideoFormatsForCurrentCaptureDevice

The code for the DisplayVideoFormatsForCurrentCaptureDevice function is shown

above. The important point to realize here is that we cannot get the video format

information directly from the Video Capture Device. It just does not have the capability

to provide that. There are two basic ways of getting the Media Type and format

information.

1. We could use the Video Capture Device information to create a

Media Source and then use that to give us a list of all of the video

formats offered by a specific Video Capture Device.

2. Alternatively, we could use the Video Capture Device to create a

Source Reader and interrogate that to find the video formats.

Recall that a Source Reader actually contains a Media Source so the Source Reader

route is just a slightly different (and some would say easier) way of interrogating a

Media Source. The Source Reader method will not be discussed in this book – but if you

are interested you can have a look at the ctlTantaVideoPickerViaReader control in

the TantaCommon project. This control does exactly the same thing as the

ctlTantaVideoPicker control – it just uses a Source Reader enumeration mechanism.

It should be noted that pretty much all of the examples you will find on the Internet use

the Source Reader route – but they will not provide you with any experience interacting

with a Media Source, Presentation and Media Stream. They get the job done but, from a

learning perspective, they are something of a dead end.

The first thing we do in the DisplayVideoFormatsForCurrentCaptureDevice function

is to create the Media Source from the currently selected Video Capture Device. The

creation of the Media Source is done with a call to the static

GetMediaSourceFromTantaDevice function in the TantaWMFUtils library.

 WMF – First Contact

 163

// get the currently selected device

TantaMFDevice currentDevice = (TantaMFDevice)comboBoxCaptureDevices.SelectedItem;

if (currentDevice == null)

{

 throw new Exception("DisplayVideoFormatsForCurrentCaptureDevice currentDevice == null");

}

// use the device symbolic name to create the media source for the video device.

mediaSource = TantaWMFUtils.GetMediaSourceFromTantaDevice(currentDevice);

if (mediaSource == null)

{

 throw new Exception("failed, mediaSource == null");

}

The GetMediaSourceFromTantaDevice function takes a single parameter of type

TantaMFDevice. Recall that a TantaMFDevice is pretty much just a Friendly Name and

Symbolic Name pair for a specific Video Capture Device.

public static IMFMediaSource GetMediaSourceFromTantaDevice(TantaMFDevice sourceDevice)

{

 IMFMediaSource mediaSource = null;

 HResult hr = 0;

 IMFAttributes attributeContainer = null;

 try

 {

 if (sourceDevice == null)

 {

 // we failed

 throw new Exception("GetMediaSourceFromTantaDevice sourceDevice == null");

 }

 if ((sourceDevice.SymbolicName == null) || (sourceDevice.SymbolicName.Length == 0))

 {

 // we failed

 throw new Exception("failed null or bad symbolicLinkStr");

 }

 if (sourceDevice.DeviceType == Guid.Empty)

 {

 // we failed

 throw new Exception("GetMediaSourceFromTantaDevice DeviceType == Guid.Empty");

 }

 // Initialize an attribute store. We will use this to

 // specify the device parameters.

 hr = MFExtern.MFCreateAttributes(out attributeContainer, 2);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed MFCreateAttributes, retVal=" + hr.ToString());

 }

 if (attributeContainer == null)

 {

 // we failed

 throw new Exception("failed, attributeContainer == null");

 }

 // setup the attribute container, it is always a MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE

 hr = attributeContainer.SetGUID(

 MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE,

 sourceDevice.DeviceType);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed setting up the attributes, retVal=" + hr.ToString());

 }

 // set the formal (symbolic name) name of the device as an attribute.

 hr = attributeContainer.SetString(

 MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_SYMBOLIC_LINK,

 sourceDevice.SymbolicName);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed symbolic name, retVal=" + hr.ToString());

 }

 // get the media source from the symbolic name

 hr = MFExtern.MFCreateDeviceSource(attributeContainer, out mediaSource);

WMF – First Contact

164

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed MFCreateDeviceSource, retVal=" + hr.ToString());

 }

 }

 finally

 {

 // make sure we release the attribute memory

 if (attributeContainer != null)

 {

 Marshal.ReleaseComObject(attributeContainer);

 }

 }

 return mediaSource;

}

Source: TantaCommon::TantaWMFUtils::GetMediaSourceFromTantaDevice

Remember that at this point we do not have a Video Capture Device or even an

Activator for one. What we do have is a Friendly Name and Symbolic Name pair for a

specific Video Capture Device of interest. So the first thing we need to do is get a Media

Source from this information. This process, since it is likely to need to be re-used, is

encapsulated into a static routine in the Tanta libraries which accepts a TantaMFDevice

and returns an appropriate Media Source built from it.

Really the ultimate goal of the above code is to call the WMF MFCreateDeviceSource

function and get it to give us back a Media Source device. However the

MFCreateDeviceSource function it is not prepared to accept a symbolic name as a

parameter – it wants an Attribute and it wants that Attribute to be stored in an

Attribute container. So we run through the, by now familiar pattern, of getting an

attribute store with an MFCreateAttributes call and then populating it with the

information the MFCreateDeviceSource function is going to need.

// Enumerate the devices.

hr = MFExtern.MFEnumDeviceSources(attributeContainer, out deviceArr, out numDevices);

// setup the attribute container, it is always a MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE here

hr = attributeContainer.SetGUID(MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE,

 sourceDevice.DeviceType);

// set the formal (symbolic name) name of the device as an attribute.

hr = attributeContainer.SetString(

 MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_SYMBOLIC_LINK,

 sourceDevice.SymbolicName);

The code is mostly self-explanatory and so will not be discussed further here other than

to note that the attribute container requires two Attributes to be set in this particular

case.

Returning to the GetMediaSourceFromTantaDevice code, once we have a populated

Attribute container we can easily create a Media Source using the static

MFCreateDeviceSource() function call.

 // get the media source from the symbolic name

 hr = MFExtern.MFCreateDeviceSource(attributeContainer, out mediaSource);

 WMF – First Contact

 165

Now that we have a Media Source, we return to the

DisplayVideoFormatsForCurrentCaptureDevice function. Once we have the Media

Source it is a simple task to acquire a Presentation Descriptor and the count of the

Media Streams in that Presentation Descriptor.

// A presentation is a set of related media streams that share a common presentation time.

// we don't need that functionality in this app but we do need to presentation descriptor

// to find out the stream descriptors, these will give us the media types on offer

hr = mediaSource.CreatePresentationDescriptor(out sourcePresentationDescriptor);

// Now we get the number of stream descriptors in the presentation.

hr = sourcePresentationDescriptor.GetStreamDescriptorCount(out sourceStreamCount);

After we have the count of the streams in the Presentation Descriptor

(sourceStreamCount) we look at each one in turn until we find the first enabled stream

whose Media Major Type is video.

// look for the video stream

for (int i = 0; i < sourceStreamCount; i++)

{

 // we require the major type to be video

 Guid guidMajorType = TantaWMFUtils.GetMajorMediaTypeFromPresentationDescriptor(

 sourcePresentationDescriptor, i);

 if (guidMajorType != MFMediaType.Video) continue;

 // we also require the stream to be enabled

 hr = sourcePresentationDescriptor.GetStreamDescriptorByIndex(i,

 out streamIsSelected, out videoStreamDescriptor);

 // if the stream is not selected (enabled) look for the next

 if (streamIsSelected == false)

 {

 Marshal.ReleaseComObject(videoStreamDescriptor);

 videoStreamDescriptor = null;

 continue;

 }

... more code

The process of extracting the Media Major Type from a stream has been discussed

elsewhere in this book – it will not be discussed here other than to note the entire

process has been factored out into a function in the TantaWMFUtils class of the

TantaCommon library. Note the release process for the streams we do not use.

Once we have an enabled video stream, we need to look at the Media Types and

formats it supports - Video Capture Devices usually offer a large number of options. This

means we have to enumerate the Media Types in the stream and the way this is done is

to acquire a Type Handler object from the Media Stream. Quite why we need to acquire

a Type Handler to do this instead of just asking the Media Stream for them directly is

something of a mystery. However, it is what it is and the Type Handler is the way it is

done.

// Get the media type handler for the stream. IMFMediaTypeHandler

// interface is a standard way of looking at the media types on a stream

hr = videoStreamDescriptor.GetMediaTypeHandler(out typeHandler);

// Now we get the number of media types in the stream descriptor.

hr = typeHandler.GetMediaTypeCount(out mediaTypeCount);

... more code

WMF – First Contact

166

Once we have the Type Handler we enumerate the Media Types in the stream in exactly

the same way we used the Presentation Descriptor to discover the Media Streams in a

Media Source.

// now loop through each media type

for (int mediaTypeId = 0; mediaTypeId < mediaTypeCount; mediaTypeId++)

{

 // Now we have the handler, get the media type.

 IMFMediaType workingMediaType = null;

 hr = typeHandler.GetMediaTypeByIndex(mediaTypeId, out workingMediaType);

 TantaMFVideoFormatContainer tmpContainer =

 TantaMediaTypeInfo.GetVideoFormatContainerFromMediaTypeObject(

 workingMediaType, currentDevice);

 // now add it

 formatList.Add(tmpContainer);

 Marshal.ReleaseComObject(workingMediaType);

 workingMediaType = null;

}

The operation of the enumeration in the above for loop is simple enough, the first

action is to get the Media Type from the Type Handler. Once we have a media type, we

make a call to a static TantaWMFUtils function named

GetVideoFormatContainerFromMediaTypeObject which acts as a container for the

Media Type information and also separates certain selected Attribute details out into

human readable form for display

purposes. The information we are

mostly interested in is the video

format type, the screen size and the

typical frame rates. Note that there is

typically a lot of other information

stored in the Attributes of a Media

type. These details are not processed

– but the names of the Attributes are

collected as a string for display

purposes.

The contents of the GetVideoFormatContainerFromMediaTypeObject function will

not be displayed or discussed further here as it is not particularly educational and you

can easily look that code up if you wish to have more details.

Once each Media Type supported by the Media Source (and hence ultimately by the

Video Capture Device) has been processed into a TantaMFVideoFormatContainer and

returned as an item in a generic list the

DisplayVideoFormatsForCurrentCaptureDevice function can use it to present that

information to the user. In this case a simple list view is populated as shown in Figure

6.3.

Figure 6.3: The Media Type Information Presented on the Screen

 167

Windows Media Foundation:
Getting Started in C#

Chapter 7

PRACTICAL WMF ARCHITECTURES
As discussed in the Windows Media Foundation Architecture chapter, there are two

basic types of Windows Media Foundation Architecture and a third which is a hybrid

between the first two. The names given to these architectures (in this book) are the

Pipeline Architecture, the Reader-Writer Architecture and the Hybrid Architecture. Each

of these will be discussed in detail in the sections below.

It is worth taking a bit of time to read and understand the concepts presented here. The

subsequent chapters, which discuss working applications and sample techniques, will

not repeat these ideas in any great detail. They will, for example, simply assume that

you know what is meant by a statement like “The application uses a standard Pipeline

Architecture running from a MP4 Media Source to an EVR Renderer”. There is a great

deal of implied context embedded in a statement like that and if you are going to be

able to successfully “unpack” it you will need to understand the concepts below.

Practical WMF Architectures

168

IMPLEMENTING THE PIPELINE ARCHITECTURE

The Pipeline is arguably the primary architecture of Windows Media Foundation –

although you could be forgiven for thinking otherwise if you look at the available sample

code on the Internet.

Pipelines seem complex but, if you take a broad enough overview, they always follow

the same general prescription. Let’s take the simple case of a Pipeline which will contain

one Media Source and one Media Sink. The set of steps taken to create a Pipeline

Architecture in that situation are as follows…

1. A Media Session is created.

2. A Media Source is created.

3. A Media Stream and Media Type on that stream are selected.

4. A Media Sink is created.

5. A Topology is created

6. The Media Source is added to the Topology as a Node.

7. The Media Sink is added to the Topology as a Node.

8. The source Topology Node is connected to the sink Topology

Node.

9. The Topology is resolved.

10. The Pipeline is created and the media data flows.

Of course, it is not quite that simple and there are plenty of other things to consider.

Let’s take another run at it, this time with more detail.

1. A Media Session is setup and it is given a Callback Object so that

it can communicate events to the application.

2. A Topology object is created.

3. A Media Source is created.

4. The Media Source will have one or more Media Streams. We

obtain a Stream Descriptor and choose one of those streams for

our Pipeline. This is called “selecting” it.

5. The Media Stream will probably offer multiple Media Types.

Inside the Media Stream we choose the Media Type we wish to

use. This is called making the Media Type “current” on the

stream.

6. We create a Media Sink and give it the Media Type it will be

dealing with as an input. This does not have to be the same

Media Type as output by the source stream.

 Practical WMF Architectures

 169

7. We may, for some types of Media Sink have to tell it the Media

Type of the output it should use.

8. We create a Topology Node for the Media Source and tell it

about the source Media Stream using the Stream Descriptor.

9. We create a Topology Node for Media Sink and tell it which of

the input streams (on the sink) the node will reference. If there is

only a single stream this will always be stream 0. If there is more

than one stream we will provide a specific index.

10. We add the two Topology Nodes to the Topology object.

11. If the output Media Type of the stream on the Media Source is

not the same as the Media Type of the input stream on the

Media Sink, then we have two options. The first option is to find

a conversion Transform and add that to the Topology.

Alternatively, if we are in a file playback situation (i.e. we are

using the Enhanced Video Renderer or Streaming Audio

Renderer as sinks) we can just ignore the Media Type mismatch.

12. We now connect up the Topology Nodes. If we have only source

and sink nodes we connect them up. If we have a Transform, we

connect the source node to the transform node and the

transform node to the sink node. If we have mismatched Media

Types, we just connect the source and sink node anyways. If the

Media Type used as output on one node does not match the

input Media type on the next we say we have created a “Partial

Topology” rather than a “Full Topology”.

13. We ask the Media Session to resolve the Topology. If there is a

Partial Topology, the Topology Object will adjust the Topology

and automatically add Transforms to make it all work. This is

only available in a file playback scenario.

14. Immediately after the Topology is resolved, the Pipeline is

created. The Media Session sends events through its Callback

Object and the media data can start moving through the Pipeline

from the source to sink.

It is obvious from the above list that there are considerably more steps – but the

fundamental process is identical. We could make yet another list with even more steps -

but there is no point. We would just be writing out words the operations a block of

example code would make explicitly clear. The complete source code for a simple

Pipeline will be shown shortly. First, however, we need to make a brief digression to

discuss Media Sinks and their sometimes unique requirements.

Practical WMF Architectures

170

THE STANDARDIZATION OF PIPELINE COMPONENTS

Media Sources are pretty standard and your interaction with them will largely be the

same even if they represent wildly different devices such as webcams, microphones or

files. This means that if you find some example code on the Internet using one type of

Media Source then you should be able to convert it to another type of Media Source

with only modest changes.

The real area of confusion is Media Sinks - each Media Sink

tends to have its own set-up requirements. Although they

are broadly similar in most respects, the creation and

configuration of each type of Media Sink does vary.

For example, there is no need to tell the MP3 file sink its output format – it only writes

MP3 files. This is definitely not so with something like the MP4 file sink which can store

a variety of internal formats and media types (H.264/AVC video, AAC audio, MP3 audio).

The Enhanced Video Renderer, which displays video data on the screen, also does not

have an output format. The EVR is a very sophisticated component and can also accept a

wide variety of input formats. This means usually no need to consider the EVR when

choosing a Media Type on the source stream. Also, since the EVR is a renderer,

Transforms will be automatically added to the Topology to convert the format if

necessary.

That is just the way it is with Media Sinks, sometimes you need to care about the input

Media Type, sometimes you need to care about the output Media Type and sometimes

the sink more or less just figures it out for itself. Fortunately, there are not many Media

Sinks on offer and so learning the idiosyncrasies of each is not too hard. The Tanta

Sample Projects only use five types of sink (MP4, MP3, EVR, SAR and Sample Grabber).

Just be aware that if you are trying to convert some sample code which uses an MP3

sink to use an MP4 sink you will probably have to make changes. Media Sinks are, in

general, not “drop-in” replacements for each other.

THE SAMPLE PIPELINE ARCHITECTURE SOURCE

The code block below shows a complete end-to-end build of a Pipeline Architecture.

This example code is taken from the TantaAudioFileCopyViaPipelineMP3Sink Sample

 Practical WMF Architectures

 171

Project. The project is designed to copy an MP3 file using the Pipeline. This project is

about as simple as it is possible to get – the output format is identical to the input

format (so there is no need to worry about Media Type conversion) and there is only

one stream of data to deal with (audio). Let’s have a look at the code. As you walk

through it, remember the above list of steps, you will see it follows the sequence very

closely.

/// +=

/// <summary>

/// Opens prepares the media session and topology and opens the media source

/// and media sink.

///

/// Once the session and topology are setup, a MESessionTopologySet event

/// will be triggered in the Callback Object. After that the events there

/// trigger other events and everything rolls along automatically.

/// </summary>

/// <param name="sourceFileName">the source file name</param>

/// <param name="outputFileName">the name of the output file</param>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

public void PrepareSessionAndTopology(string sourceFileName, string outputFileName)

{

 HResult hr;

 IMFSourceResolver pSourceResolver = null;

 IMFTopology pTopology = null;

 IMFPresentationDescriptor sourcePresentationDescriptor = null;

 int sourceStreamCount = 0;

 IMFStreamDescriptor audioStreamDescriptor = null;

 bool streamIsSelected = false;

 IMFTopologyNode sourceAudioNode = null;

 IMFTopologyNode outputSinkNode = null;

 IMFMediaType currentAudioMediaType = null;

 int audioStreamIndex = -1;

 LogMessage("PrepareSessionAndTopology ");

 // we sanity check the filenames - the existence of the path and if the file already exists

 // should have been checked before this call

 if ((sourceFileName == null) || (sourceFileName.Length == 0))

 {

 throw new Exception("source file name is invalid. Cannot continue.");

 }

 if ((outputFileName == null) || (outputFileName.Length==0))

 {

 throw new Exception("output file name is invalid. Cannot continue.");

 }

 try

 {

 // reset everything

 CloseAllMediaDevices();

 // Create the media session.

 hr = MFExtern.MFCreateMediaSession(null, out mediaSession);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MFCreateMediaSession failed. Err=" + hr.ToString());

 }

 if (mediaSession == null)

 {

 throw new Exception("call to MFCreateMediaSession failed. mediaSession == null");

 }

 // set up our media session Callback Object.

 mediaSessionAsyncCallbackHandler = new TantaAsyncCallbackHandler();

 mediaSessionAsyncCallbackHandler.Initialize();

 mediaSessionAsyncCallbackHandler.MediaSession = mediaSession;

 mediaSessionAsyncCallbackHandler.MediaSessionAsyncCallBackError =

 HandleMediaSessionAsyncCallBackErrors;

 mediaSessionAsyncCallbackHandler.MediaSessionAsyncCallBackEvent =

 HandleMediaSessionAsyncCallBackEvent;

Practical WMF Architectures

172

 // Register the Callback Object with the session and tell it that events can

 // start. This does not actually trigger an event it just lets the media session

 // know that it can now send them if it wishes to do so.

 hr = mediaSession.BeginGetEvent(mediaSessionAsyncCallbackHandler, null);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to BeginGetEvent failed. Err=" + hr.ToString());

 }

 // Create a new topology.

 hr = MFExtern.MFCreateTopology(out pTopology);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MFCreateTopology failed. Err=" + hr.ToString());

 }

 if (pTopology == null)

 {

 throw new Exception("call to MFCreateTopology failed. pTopology == null");

 }

 // ####

 // #### we now create the media source, this is an audio file

 // ####

 // use the file name to create the media source for the audio device.

 mediaSource = TantaWMFUtils.GetMediaSourceFromFile(sourceFileName);

 if (mediaSource == null)

 {

 throw new Exception("PrepareSessionAndTopology call to mediaSource == null");

 }

 // We now get a copy of the media source's presentation descriptor.

 // Applications can use the presentation descriptor to select streams

 hr = mediaSource.CreatePresentationDescriptor(out sourcePresentationDescriptor);

 if (hr != HResult.S_OK)

 {

 throw new Exception("CreatePresentationDescriptor failed. Err=" + hr.ToString());

 }

 if (sourcePresentationDescriptor == null)

 {

 throw new Exception("failed. sourcePresentationDescriptor == null");

 }

 // Now we get the number of stream descriptors in the presentation.

 hr = sourcePresentationDescriptor.GetStreamDescriptorCount(out sourceStreamCount);

 if (hr != HResult.S_OK)

 {

 throw new Exception("GetStreamDescriptorCount failed. Err=" + hr.ToString());

 }

 if (sourceStreamCount == 0)

 {

 throw new Exception("GetStreamDescriptorCount failed. sourceStreamCount == 0");

 }

 // Look at each stream, there can be more than one stream here

 // Usually only one is enabled. This app uses the first "selected"

 // stream we come to which has the appropriate media type

 for (int i = 0; i < sourceStreamCount; i++)

 {

 // we require the major type to be audio

 Guid guidMajorType =

 TantaWMFUtils.GetMajorMediaTypeFromPresentationDescriptor(

 sourcePresentationDescriptor, i);

 if (guidMajorType != MFMediaType.Audio) continue;

 // we also require the stream to be enabled

 hr = sourcePresentationDescriptor.GetStreamDescriptorByIndex(i,

 out streamIsSelected, out audioStreamDescriptor);

 if (hr != HResult.S_OK)

 {

 throw new Exception("GetStreamDescriptorByIndex failed. Err=" + hr.ToString());

 }

 if (audioStreamDescriptor == null)

 {

 throw new Exception("failed. audioStreamDescriptor == null");

 }

 // if the stream is selected, leave now we will release the

 // audioStream descriptor later

 if (streamIsSelected == true)

 {

 audioStreamIndex = i; // record this

 Practical WMF Architectures

 173

 break;

 }

 // release the one we are not using

 if (audioStreamDescriptor != null)

 {

 Marshal.ReleaseComObject(audioStreamDescriptor);

 audioStreamDescriptor = null;

 }

 audioStreamIndex = -1;

 }

 // by the time we get here we should have a audioStreamDescriptor if

 // we do not, then we cannot proceed

 if (audioStreamDescriptor==null)

 {

 throw new Exception("audioStreamDescriptor == null");

 }

 if(audioStreamIndex < 0)

 {

 throw new Exception("failed. audioStreamIndex < 0");

 }

 // ####

 // #### we now create the media sink, we need the type from the stream to do

 // #### this which is why we wait until now to set it up

 // ####

 currentAudioMediaType = TantaWMFUtils.GetCurrentMediaTypeFromStreamDescriptor(

 audioStreamDescriptor);

 if (currentAudioMediaType == null)

 {

 throw new Exception("call to currentAudioMediaType == null");

 }

 mediaSink = OpenMediaFileSink(outputFileName);

 if (mediaSink == null)

 {

 throw new Exception("PrepareSessionAndTopology call to mediaSink == null");

 }

 // ####

 // #### we now make up a topology branch for the audio stream

 // ####

 // Create a source node for this stream.

 sourceAudioNode = TantaWMFUtils.CreateSourceNodeForStream(mediaSource,

 sourcePresentationDescriptor, audioStreamDescriptor);

 if (sourceAudioNode == null)

 {

 throw new Exception("failed. pSourceNode == null");

 }

 // Create the output node - this is a file sink in this case.

 outputSinkNode = TantaWMFUtils.CreateSinkNodeForStream(mediaSink);

 if (outputSinkNode == null)

 {

 throw new Exception("outputSinkNode == null");

 }

 // Add the nodes to the topology. First the source

 hr = pTopology.AddNode(sourceAudioNode);

 if (hr != HResult.S_OK)

 {

 throw new Exception("AddNode(sourceAudioNode) failed. Err=" + hr.ToString());

 }

 // then add the output

 hr = pTopology.AddNode(outputSinkNode);

 if (hr != HResult.S_OK)

 {

 throw new Exception("AddNode(outputSinkNode) failed. Err=" + hr.ToString());

 }

 // Connect the output stream from the source node to the input stream of

 // the output node.

 hr = sourceAudioNode.ConnectOutput(0, outputSinkNode, 0);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to ConnectOutput failed. Err=" + hr.ToString());

 }

Practical WMF Architectures

174

 // Set the topology on the media session.

 // If SetTopology succeeds, the media session will queue an

 // MESessionTopologySet event.

 hr = mediaSession.SetTopology(0, pTopology);

 MFError.ThrowExceptionForHR(hr);

 // Release the topology

 if (pTopology != null)

 {

 Marshal.ReleaseComObject(pTopology);

 }

 }

 catch (Exception ex)

 {

 LogMessage("Error: " + ex.Message);

 OISMessageBox(ex.Message);

 }

 finally

 {

 // Clean up

 if (pSourceResolver != null)

 {

 Marshal.ReleaseComObject(pSourceResolver);

 }

 if (sourcePresentationDescriptor != null)

 {

 Marshal.ReleaseComObject(sourcePresentationDescriptor);

 }

 if (audioStreamDescriptor != null)

 {

 Marshal.ReleaseComObject(audioStreamDescriptor);

 }

 if (sourceAudioNode != null)

 {

 Marshal.ReleaseComObject(sourceAudioNode);

 }

 if (outputSinkNode != null)

 {

 Marshal.ReleaseComObject(outputSinkNode);

 }

 if (currentAudioMediaType != null)

 {

 Marshal.ReleaseComObject(currentAudioMediaType);

 }

 }

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::GetMediaSourceFromTantaDevice

Don’t be too concerned about the length of the above code. It was written from a

demonstration point of view. This means that a lot of the things that might have been

placed in subroutines have been deliberately written in-line so the process can be

observed from end to end. Let’s follow it down section by section and discuss what each

part is doing. You may well wish to refer back to The WMF Components chapter if your

memory of the role of each component is hazy.

The first thing we do, other than a bit of error checking and administration, is to create a

Media Session.

// Create the media session.

hr = MFExtern.MFCreateMediaSession(null, out mediaSession);

No great surprises there - it is just a simple call to the external MFCreateMediaSession

static function. In the next block we create and configure a Callback Object and give it to

the Media Session.

 Practical WMF Architectures

 175

 // set up our media session Callback Object.

 mediaSessionAsyncCallbackHandler = new TantaAsyncCallbackHandler();

 mediaSessionAsyncCallbackHandler.Initialize();

 mediaSessionAsyncCallbackHandler.MediaSession = mediaSession;

 mediaSessionAsyncCallbackHandler.MediaSessionAsyncCallBackError =

 HandleMediaSessionAsyncCallBackErrors;

 mediaSessionAsyncCallbackHandler.MediaSessionAsyncCallBackEvent =

 HandleMediaSessionAsyncCallBackEvent;

 // Register the Callback Object with the session and tell it that events can

 // start. This does not actually trigger an event it just lets the media session

 // know that it can now send them if it wishes to do so.

 hr = mediaSession.BeginGetEvent(mediaSessionAsyncCallbackHandler, null);

The error and event handlers in the code block above are standard C# delegate/events

which relay messages back to the main application from the Callback Object. They were

extensively discussed in the Callback Objects section of The WMF Components chapter

and that information will not be repeated here.

The BeginGetEvent() call on the Media Session registers the Callback Object with the

Media Session and also lets it know that it can start sending messages if it needs to do

so. In reality, Media Session will not do anything until the Topology is resolved. The next

action, which creates the Topology object, is similarly standard.

// Create a new topology.

hr = MFExtern.MFCreateTopology(out pTopology);

Note that the creation of the Topology object here is not the same as “resolving” it.

There is a good deal of configuration to do before we get to that action. After the

Topology is created, the Media Source is created from the filename.

// use the file name to create the media source for the audio device.

mediaSource = TantaWMFUtils.GetMediaSourceFromFile(sourceFileName);

The creation of a Media Source from a file or URL is a common multi-step process. In

order to simplify things visually (not to mention promoting code-reuse) the creation

process has been factored out to a static function in the TantaWMFUtils class in the

TantaCommon library. The operation of this code has been extensively discussed earlier in

this book and there is no real benefit to revisiting that topic here.

The next thing we do is get the Presentation Descriptor from the Media Source and use

it to count the number of streams on offer.

 // We now get a copy of the media source's presentation descriptor.

 // Applications can use the presentation descriptor to select streams

 hr = mediaSource.CreatePresentationDescriptor(out sourcePresentationDescriptor);

 // Now we get the number of stream descriptors in the presentation.

 hr = sourcePresentationDescriptor.GetStreamDescriptorCount(out sourceStreamCount);

Other than the error checking, both of the above operations are straight-forward. Once

we have the number of streams in the Presentation, it is a simple matter to look at each

stream in turn and find the one we want. This is the purpose of the for loop in the

sample code block.

Practical WMF Architectures

176

 for (int i = 0; i < sourceStreamCount; i++)

 {

 // we require the major type to be audio

 Guid guidMajorType = TantaWMFUtils.GetMajorMediaTypeFromPresentationDescriptor(

 sourcePresentationDescriptor, i);

 if (guidMajorType != MFMediaType.Audio) continue;

 // we also require the stream to be enabled

 hr = sourcePresentationDescriptor.GetStreamDescriptorByIndex(i, out

 streamIsSelected, out audioStreamDescriptor);

 // if the stream is selected, leave now we will release the

 // audioStream descriptor later

 if (streamIsSelected == true)

 {

 audioStreamIndex = i; // record this

 break;

 }

 // release the one we are not using

 if (audioStreamDescriptor != null)

 {

 Marshal.ReleaseComObject(audioStreamDescriptor);

 audioStreamDescriptor = null;

 }

 audioStreamIndex = -1;

 }

With the error checking stripped out, the for loop is really just a simple series of tests.

Ultimately, by the time the loop ends, we will have identified a Stream Descriptor for

the first enabled (selected) audio stream in the Presentation. Note that the Stream

Descriptors we do not use are released – any object we obtain from Windows Media

Foundation must be released when you are done with it.

The next thing to do is to create the Media Sink.

 mediaSink = OpenMediaFileSink(outputFileName);

Like the creation of the Media Source, the creation process for the Media Sink has been

factored out into a separate function – in this case a call to OpenMediaFileSink()

which is located in the applications frmMain class. The operation of this code has been

extensively discussed earlier in the Creating a Media Sink On a File section of The WMF

Components chapter and so we will not reproduce that information here.

We already have a Topology object and the next thing we need to do is create some

nodes for it. Topology Nodes are the objects which will hold the WMF components (or

references to them) until they are added to the Pipeline. The Topology Nodes also

connect to each other and this enables the information flow through the branches in

the Pipeline to be rigorously specified. Usually the input and/or output Media Types (as

appropriate) for each step in the Pipeline is also specified on the Topology Nodes when

they are created.

// Create a source node for this stream.

sourceAudioNode = TantaWMFUtils.CreateSourceNodeForStream(mediaSource,

 sourcePresentationDescriptor, audioStreamDescriptor);

 Practical WMF Architectures

 177

Recall from our earlier discussion of Topology Nodes in The WMF Components chapter,

that each Topology Node is explicitly either a source, sink or transform node. This mode

is configured into them at creation time. The creation of Topology Nodes for a Media

Source is common enough that the operation has been factored out in to a static

CreateSourceNodeForStream function in the TantaWMFUtils class of the TantaCommon

library. The operation of this code has also been discussed earlier in this book and will

not be covered again here.

Note that that the source Topology Node requires both

the Presentation Descriptor and the Stream Descriptor for

its creation process. In addition, in the general case, the

stream would have previously been “selected” in the

Presentation Descriptor and a Media Type made “current”

in the Stream Descriptor. This is how the Topology Node

identifies the Stream and Media Type the Media Source

represents.

The Topology Node for the Media Sink is also created with a call to the

CreateSinkNodeForStream static function in the TantaWMFUtils class. All the creation

process for the sink Topology Node requires is the ID of the stream on the Media Sink

that will receive the data (some Media Sinks can have more than one). In this particular

application the MP3 file sink can only have one stream and so the ID of 0 is assumed.

Once we have the Topology Nodes we add them to the Topology Object

// Add the nodes to the topology. First the source

hr = pTopology.AddNode(sourceAudioNode);

// then add the output

hr = pTopology.AddNode(outputSinkNode);

Since we have no other nodes in the Topology, we can directly connect the source and

sink Topology Nodes.

// Connect the output stream from the source node to the input stream of the output node.

hr = sourceAudioNode.ConnectOutput(0, outputSinkNode, 0);

Once the Topology is built we can resolve it and build the Pipeline. This is done with a

somewhat anti-climactic call to the SetTopology() function on the Media Session.

// Set the topology on the media session.

hr = mediaSession.SetTopology(0, pTopology);

That is it - at this point the Pipeline is created – but don’t expect the media data to

immediately start moving. The Media Session exists to enable the application to control

Practical WMF Architectures

178

the flow of the data. It is only logical that the Media Session might expect the

application to tell it to start (and stop).

STARTING UP THE PIPELINE

 The Media Session communicates with the application via its Callback Object. In the

Tanta Sample programs this is always done via the TantaAsyncCallbackHandler class

in the TantaCommon project. This class was discussed in detail in the Callback Objects

section of The WMF Components chapter – you should review that part of the book

again if you need some background on Callback Handlers.

The upshot is that the TantaAsyncCallbackHandler class intercepts the messages

coming back from the Media Session and splits them into two categories: “events” and

“errors”. These are passed back into the application via C# events and eventually the

HandleMediaSessionAsyncCallBackEvent and

HandleMediaSessionAsyncCallBackErrors functions will be (respectively) called. We

will look at error handling in a moment, the code block below shows the contents of the

HandleMediaSessionAsyncCallBackEvent function.

/// +=

/// <summary>

/// Handles events reported by the media session TantaAsyncCallbackHandler

/// </summary>

/// <param name="sender">the object sending the event</param>

/// <param name="mediaEvent">the event generated by the media session.

/// Do NOT release this here.</param>

/// <param name="mediaEventType">the eventType, this is just an enum</param>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

private void HandleMediaSessionAsyncCallBackEvent(object sender, IMFMediaEvent pEvent,

MediaEventType mediaEventType)

{

 LogMessage("Media Event Type " + mediaEventType.ToString());

 switch (mediaEventType)

 {

 case MediaEventType.MESessionTopologyStatus:

 // Raised by the Media Session when the status of a topology changes.

 // Get the topology changed status code. This is an enum in the event

 int i;

 HResult hr = pEvent.GetUINT32(MFAttributesClsid.MF_EVENT_TOPOLOGY_STATUS, out i);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to pEvent failed. Err=" + hr.ToString());

 }

 // the one the handler is probably most interested in is i == MFTopoStatus.Ready

 HandleTopologyStatusChanged(pEvent, mediaEventType, (MFTopoStatus)i);

 break;

 case MediaEventType.MESessionStarted:

 // Raised when the IMFMediaSession::Start method completes asynchronously.

 break;

 case MediaEventType.MESessionPaused:

 // Raised when the IMFMediaSession::Pause method completes asynchronously.

 break;

 case MediaEventType.MESessionStopped:

 // Raised when the IMFMediaSession::Stop method completes asynchronously.

 break;

 case MediaEventType.MESessionClosed:

 Practical WMF Architectures

 179

 // Raised when the IMFMediaSession::Close method completes asynchronously.

 break;

 case MediaEventType.MESessionCapabilitiesChanged:

 // Raised by the Media Session when the session capabilities change.

 // You can use IMFMediaEvent::GetValue to figure out what they are

 break;

 case MediaEventType.MESessionTopologySet:

 // Raised after the IMFMediaSession::SetTopology method completes asynchronously.

 // The Media Session raises this event after it resolves the topology

 // into a full topology and queues the topology for playback.

 break;

 case MediaEventType.MESessionNotifyPresentationTime:

 // Raised by the Media Session when a new presentation starts.

 // This event indicates when the presentation will start and

 // the offset between the presentation time and the source time.

 break;

 case MediaEventType.MEEndOfPresentation:

 // Raised by a media source when a presentation ends. This event

 // signals that all streams in the presentation are complete. The

 // Media Session forwards this event to the application.

 // we cannot sucessfully .Finalize_ on the SinkWriter

 // if we call CloseAllMediaDevices directly from this thread

 // so we use an asynchronous method

 Task taskA = Task.Run(() => CloseAllMediaDevices());

 // we have to be on the form thread to update the screen

 ThreadSafeScreenUpdate(this, false, "Done");

 break;

 case MediaEventType.MESessionRateChanged:

 // Raised by the Media Session when the playback rate changes.

 // This event is sent after the

 // IMFRateControl::SetRate method completes asynchronously.

 break;

 default:

 LogMessage("Unhandled Media Event Type " + mediaEventType.ToString());

 break;

 }

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::HandleMediaSessionAsyncCallBackEvent

As you can see, the Media Session can send quite a few events – most of which this

application quite indifferent to. We will not itemize and discuss each event here – the

comments in the above code are pretty self-explanatory. The

TantaAudioFileCopyViaPipelineMP3Sink application is only interested in two of the

events: the MESessionTopologyStatus event and the MEEndOfPresentation event.

The MEEndOfPresentation is important when shutting down the Pipeline and will be

discussed below. It is the MESessionTopologyStatus event which is relevant to the

start-up process of the Pipeline. It should be emphasized that just because this

application ignores most of the events that doesn’t mean they all do. For example, the

ctrlTantaEVRFilePlayer control in the TantaFilePlayBackAdvanced Sample Project

takes a great deal more interest in many of these other event types.

The MESessionTopologyStatus event is a funny one because it can contain a variety of

meanings based on the contents of one of its Attributes.

 // Raised by the Media Session when the status of a topology changes.

 // Get the topology changed status code. This is an enum in the event

 int i;

 HResult hr = pEvent.GetUINT32(MFAttributesClsid.MF_EVENT_TOPOLOGY_STATUS, out i);

Practical WMF Architectures

180

 // the one the handler is probably most interested in is i == MFTopoStatus.Ready

 HandleTopologyStatusChanged(pEvent, mediaEventType, (MFTopoStatus)i);

 break;

The value of the Attribute identified by the MF_EVENT_TOPOLOGY_STATUS key is an enum

of type MFTopoStatus. This value is passed in as a parameter on a call to the

HandleTopologyStatusChanged() function. This function (we will not show the code –

it is too trivial) just checks to see if the topoStatus parameter is equal to

MFTopoStatus.Ready and if it is it calls the HandleTopologyStatusChanged()

function.

private void MediaSessionTopologyNowReady(IMFMediaEvent mediaEvent)

{

 LogMessage("MediaSessionTopologyNowReady");

 try

 {

 StartFileCopy();

 }

 catch (Exception ex)

 {

 LogMessage("MediaSessionTopologyNowReady errored ex="+ex.Message);

 OISMessageBox(ex.Message);

 }

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::MediaSessionTopologyNowReady

The StartFileCopy() call simply tells the Media Session to begin.

// this is what starts the data moving through the pipeline

HResult hr = mediaSession.Start(Guid.Empty, new PropVariant());

if (hr != HResult.S_OK)

{

 throw new Exception("mediaSession.Start failed. Err=" + hr.ToString());

}

Yes, the logic here is possibly more circuitous than it really needs to be – probably a

legacy of various experiments that never got fully backed out before the Tanta Sample

Code was finalized (and this book was written). Ultimately the big takeaway is that the

act of resolving the Topology triggered an event which caused the

mediaSession.Start() call to be made. This call starts the data moving through the

Pipeline. The parameters on the mediaSession.Start() call in this example are empty

dummy values - but they can be used, as you will see later in the

TantaFilePlaybackAdvanced Sample Project, to start the Pipeline at some arbitrary

location in the Media Stream. This, of course, only works on file based Media Sources.

SHUTTING DOWN THE PIPELINE

Eventually, unless you are using a Media Source like a webcam, all of the media data will

have been sent through the Pipeline and it will be time to close things down gracefully.

When the last Media Sample has been sent, the Media Session will raise (among other

things) an MEEndOfPresentation event. The appearance of this event can be used to

begin the shutdown process on the Media Session and Pipeline.

 Practical WMF Architectures

 181

However, there is a problem. Remember that none of the events which trigger calls to

HandleMediaSessionAsyncCallBackEvent and

HandleMediaSessionAsyncCallBackErrors will be executing on the form thread. We

have to be very careful what we do – especially when we update the screen, which

always has to be done from the forms main thread.

In addition, the shutdown should really be done from a separate thread so that the

HandleMediaSessionAsyncCallBackEvent can return promptly otherwise lockups can

happen.

... more code

 case MediaEventType.MEEndOfPresentation:

 // Raised by a media source when a presentation ends. This event

 // signals that all streams in the presentation are complete. The

 // Media Session forwards this event to the application.

 // we cannot sucessfully .Finalize_ on the SinkWriter

 // if we call CloseAllMediaDevices directly from this thread

 // so we use an asynchronous method

 Task taskA = Task.Run(() => CloseAllMediaDevices());

 // we have to be on the form thread to update the screen

 ThreadSafeScreenUpdate(this, false, "Done");

 break;

... more code

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::HandleMediaSessionAsyncCallBackEvent

There are a variety of C# ways to run something as a separate thread and others which

enable you to “get back” on the forms main thread. As you can see, the above sample

code uses the C# Task mechanism to make a quick CloseAllMediaDevices() call

followed by a call to the ThreadSafeScreenUpdate() function to handle the screen

updating. Neither of these techniques will be discussed further here – they are pretty

standard C# and you can easily find out more about them from online sources if you

need to do so.

The CloseAllMediaDevices() function does deserve a bit of our attention though …

private void CloseAllMediaDevices()

{

 HResult hr;

 LogMessage("CloseAllMediaDevices");

 // close and release our Callback Object

 if (mediaSessionAsyncCallbackHandler != null)

 {

 // stop any messaging or events in the Callback Object

 mediaSessionAsyncCallbackHandler.ShutDown();

 mediaSessionAsyncCallbackHandler = null;

 }

 // close the session (this is NOT the same as shutting it down)

 if (mediaSession != null)

 {

 hr = mediaSession.Close();

 if (hr != HResult.S_OK)

 {

 // just log it

 LogMessage("call to mediaSession.Close failed. Err=" + hr.ToString());

 }

Practical WMF Architectures

182

 }

 // Shut down the media source

 if (mediaSource != null)

 {

 hr = mediaSource.Shutdown();

 if (hr != HResult.S_OK)

 {

 // just log it

 LogMessage("call to mediaSource.Shutdown failed. Err=" + hr.ToString());

 }

 Marshal.ReleaseComObject(mediaSource);

 mediaSource = null;

 }

 // Shut down the media session (note we only closed it before).

 if (mediaSession != null)

 {

 hr = mediaSession.Shutdown();

 if (hr != HResult.S_OK)

 {

 // just log it

 LogMessage("call to mediaSession.Shutdown failed. Err=" + hr.ToString());

 }

 Marshal.ReleaseComObject(mediaSession);

 mediaSession = null;

 }

 // close the media sink

 if (mediaSink != null)

 {

 Marshal.ReleaseComObject(mediaSink);

 mediaSink = null;

 }

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::HandleMediaSessionAsyncCallBackEvent

This is the only time we will document this particular procedure. All of the Tanta Sample

Applications use it and, while each one is different, each is just releasing (and possibly

finalizing) the Windows Media Foundation COM objects which are stored in class

variables. As has been repeatedly stated - we must release everything WMF gives us. It

should also be noted (bet you missed it in the above code) that closing down a Media

Session is two-step process.

hr = mediaSession.Close();

... more code

hr = mediaSource.Shutdown();

First a call to mediaSession.Close() is made and then, sometime later, a call to

mediaSource.Shutdown() happens. These calls must be made in that order and they

are definitely not synonyms for each other. In order to properly terminate a Media

Session, you must both close it and shut it down.

ERRORS IN THE PIPELINE

Errors happen, and any errors in the Pipeline will be routed back to the Media Session.

This means if you are writing custom Pipeline components all you have to do to signal an

error is throw a standard C# exception. In the Tanta Sample Projects, that error will

 Practical WMF Architectures

 183

eventually appear as a call to the HandleMediaSessionAsyncCallBackErrors function

– having been routed there by the TantaAsyncCallbackHandler Callback Object.

/// +=

/// <summary>

/// Handles errors reported by the media session TantaAsyncCallbackHandler

/// </summary>

/// <param name="sender">the object sending the event</param>

/// <param name="errMsg">the error message</param>

/// <param name="ex">the exception. Can be null</param>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

private void HandleMediaSessionAsyncCallBackErrors(object sender, string errMsg, Exception ex)

{

 if (errMsg == null) errMsg = "unknown error";

 LogMessage("HandleMediaSessionAsyncCallBackErrors Error" + errMsg);

 if (ex != null)

 {

 LogMessage("HandleMediaSessionAsyncCallBackErrors Exception trace = " + ex.StackTrace);

 }

 OISMessageBox("The media session reported an error\n\nPlease see the logfile.");

 // do everything to close all media devices

 CloseAllMediaDevices();

}

Source: TantaAudioFileCopyViaPipelineMP3Sink::frmMain::HandleMediaSessionAsyncCallBackErrors

The error handling code is impressively simple. This particular application makes no

attempt to recover from an error and simply shuts everything down. Note, that as with

the events coming back off the Media Session, we are not in the main form thread here.

We don’t have to be in this specific case, the OISMessageBox() call is designed to put

itself back on the main form thread before it interacts with the screen and all of the

LogMessage() type functionality is always thread safe as well.

DEALING WITH MULTIPLE STREAMS

So far, the discussion has revolved around a simple application which opens one Media

Source, one Media Sink and has only one Media Stream. Obviously Pipelines get a bit

more complex than that - and we will meet some in future chapters. For now, let’s

briefly consider the case where there is still only Media Source and one Media Sink but

there are two streams – in other words we are copying an MP4 file which has both a

video and audio stream.

The TantaVideoFileCopyViaPipelineMP4Sink Sample Project is designed to demonstrate

this scenario. In the interests of space we will not discuss that code in detail. However,

note that even though there are two streams, things are still fairly simple. The Media

Types on each stream are different of course, but the output Media Type of the audio

stream of the Media Source is still the same as the input Media Type on the audio

stream of the Media Sink.

If you have been following the above discussion, you should be able to walk down the

PrepareSessionAndTopology function in the frmMain class of the

Practical WMF Architectures

184

TantaVideoFileCopyViaPipelineMP4Sink Sample Project without too much trouble. As

you do this especially note how the audio and video streams are identified and separate

input and output Topology nodes are prepared for each stream.

CREATING AN MP4 FILE SINK

The MP4 file sink is odd in that it wants both a video and/or audio Media Type to be

specified at creation time. Since the TantaVideoFileCopyViaPipelineMP4Sink Sample

Project just copies a file, we just give it the video and audio Media Types that the Media

Source is producing. It does not necessarily have to be this way. We could, if we wished,

specify different types – but then we would have to introduce conversion Transforms

into the Topology. That sort of complication in the Pipeline is a topic for another

chapter.

/// +=

/// <summary>

/// Opens the Media File Sink, both the video and audio types cannot be null

/// at the same time.

///

/// The caller must release the returned sink.

/// </summary>

/// <param name="outputFileName">the filename we write out to</param>

/// <param name="videoMediaType">the video media type - can be null</param>

/// <param name="audioMediaType">the audio media type - can be null</param>

/// <returns>an IMFMediaSink object or null for fail</returns>

/// <history>

/// 01 Nov 18 Cynic - Started

/// </history>

private IMFMediaSink OpenMediaFileSink(string outputFileName,

 IMFMediaType videoMediaType, IMFMediaType audioMediaType)

{

 HResult hr;

 IMFMediaSink workingSink = null;

 IMFByteStream outbyteStream = null;

 if ((outputFileName == null) || (outputFileName.Length == 0))

 {

 // we failed

 throw new Exception("OpenMediaFileSink: Invalid filename specified");

 }

 // either the video or audio type can be null but not both

 if ((videoMediaType == null) && (audioMediaType == null))

 {

 // we failed

 throw new Exception("OpenMediaFileSink: Both video and audio types are null");

 }

 try

 {

 // Create the media sink. We use the filename to create a byte stream and

 // then create the sink from that. The types configure the output

 // first we need a bytestream

 hr = MFExtern.MFCreateFile(MFFileAccessMode.ReadWrite,

 MFFileOpenMode.DeleteIfExist,

 MFFileFlags.None, outputFileName, out outbyteStream);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed MFExtern.MFCreateFile, retVal=" + hr.ToString());

 }

 Practical WMF Architectures

 185

 if (outbyteStream == null)

 {

 // we failed

 throw new Exception("Failed to create Sink bytestream, Nothing will work.");

 }

 hr = MFExtern.MFCreateMPEG4MediaSink(outbyteStream, videoMediaType,

 audioMediaType, out workingSink);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed MFCreateMPEG4MediaSink, retVal=" + hr.ToString());

 }

 if (workingSink == null)

 {

 // we failed

 throw new Exception("Failed to create media sink, Nothing will work.");

 }

 }

 catch (Exception ex)

 {

 // note this clean up is in the Catch block not the finally block.

 // if there are no errors we return it to the caller. The caller

 // is expected to clean up after itself

 if (workingSink != null)

 {

 // clean up. Nothing else has this yet

 Marshal.ReleaseComObject(workingSink);

 workingSink = null;

 }

 workingSink = null;

 throw ex;

 }

 return workingSink;

}

Source: TantaVideoFileCopyViaPipelineMP4Sink::frmMain::OpenMediaFileSink

As with the MP3 file sink, the MP4 file sink wants to operate on a byte stream – so we

give it one. Unlike the MP3 file sink we also have to specify a video and audio Media

Type as well.

hr = MFExtern.MFCreateMPEG4MediaSink(outbyteStream, videoMediaType,

 audioMediaType, out workingSink);

It is possible for one of these Media Types to be null but not both. Note that the act of

creation here implicitly sets up separate video input and audio input streams on the

MP4 file sink. We do not, at this point have any identifiers for them.

// Create the Video and Audio sink nodes. Note the use of the media type here. The

// MP4 File Sink creates two StreamSinks when it is created (video and audio) and we

// use the major media type in order to figure out which one is which. It is the

// StreamSink that gets added to the node, not the sink itself.

outputSinkNodeVideo = TantaWMFUtils.CreateSinkNodeForStream(mediaSink, MFMediaType.Video);

When time comes to create the output Topology Node, we call the Tanta

CreateSinkNodeForStream function. This function accepts a Media Major Type value

(video in the above code block) and uses it to identify the appropriate input stream on

the MP4 file sink. It does this by obtaining the correct Stream Sink object (an

IMFStreamSink) from the MP4 Media Sink. You ran into Stream Sinks in our earlier

discussions. The relationship of a Stream Sink to a Media Sink is analogous to the

relationship a Media Stream has to a Media Source. The Stream Sink will have a Media

Major Type (video or audio) just like a Media Stream does and we can use this fact to

get it from the MP4 file sink.

Practical WMF Architectures

186

We will not reproduce the entire CreateSinkNodeForStream() function here – you can

easily review it as you walk through the code. The major line of interest is the one which

finds the Stream Sink.

// get the StreamSink

// streamSink = GetStreamSinkByMajorMediaType(mediaSink, majorMediaType);

The code for the GetStreamSinkByMajorMediaType function is below.

public static IMFStreamSink GetStreamSinkByMajorMediaType(IMFMediaSink mediaSink,

 Guid majorMediaType)

{

 HResult hr;

 IMFStreamSink outStreamSink = null;

 IMFStreamSink workingStreamSink = null;

 IMFMediaTypeHandler workingMediaTypeHandler = null;

 IMFMediaType workingMediaType = null;

 Guid workingMajorType = Guid.Empty;

 if (mediaSink == null)

 {

 throw new Exception("GetStreamSinkByMajorMediaType No media sink object provided");

 }

 // we assume we will never have more streams sinks than this

 const int MAXSTREAMS = 10;

 // look at each possible stream sink on the media sink

 for (int streamIndex=0; streamIndex < MAXSTREAMS; streamIndex++)

 {

 try

 {

 // get the StreamSink

 hr = mediaSink.GetStreamSinkByIndex(streamIndex, out workingStreamSink);

 if (hr != HResult.S_OK)

 {

 throw new Exception("GetStreamSinkByIndex failed. Err=" + hr.ToString());

 }

 if (workingStreamSink == null)

 {

 throw new Exception("GetStreamSinkByIndex failed. workingStreamSink == null");

 }

 // get the media type handler from the steam sink

 hr = workingStreamSink.GetMediaTypeHandler(out workingMediaTypeHandler);

 if (hr != HResult.S_OK)

 {

 throw new Exception("GetMediaTypeHandler failed. Err=" + hr.ToString());

 }

 if (workingMediaTypeHandler == null)

 {

 throw new Exception("failed. workingMediaTypeHandler == null");

 }

 // get the current media type

 workingMediaTypeHandler.GetCurrentMediaType(out workingMediaType);

 if (hr != HResult.S_OK) continue;

 if (workingMediaType == null) continue;

 // get the major type

 hr = workingMediaType.GetMajorType(out workingMajorType);

 if (hr != HResult.S_OK) continue;

 if (workingMajorType == Guid.Empty) continue;

 if (workingMajorType == majorMediaType)

 {

 // make sure we do not release the workingStreamSink

 // which matches. The caller must do that

 outStreamSink = workingStreamSink;

 workingStreamSink = null;

 break;

 }

 }

 finally

 {

 if (workingStreamSink != null)

 {

 Marshal.ReleaseComObject(workingStreamSink);

 Practical WMF Architectures

 187

 workingStreamSink = null;

 }

 if (workingMediaTypeHandler != null)

 {

 Marshal.ReleaseComObject(workingMediaTypeHandler);

 workingMediaTypeHandler = null;

 }

 if (workingMediaType != null)

 {

 Marshal.ReleaseComObject(workingMediaType);

 workingMediaType = null;

 }

 }

 }

 // by the time we get here the outStreamSink has either

 // been set or it has not.

 return outStreamSink;

}

Source: TantaCommon::TantaWMFUtils::GetStreamSinkByMajorMediaType

As you can see, the code looks similar to that used earlier in the

PrepareSessionAndTopology call to identify the Media Streams in the Media Source.

We literally had no other choice but to do it this way. We created the two Stream Sinks

automatically in the MP4 file sink when we passed in the respective Media Types and

we did not get back any Stream Sink objects or even stream ID values.

Once we have the Stream Sink, we can just give it directly to the Topology Node – as

shown in the code below from the CreateSinkNodeForStream function. The Topology

Node will be able to figure everything out from the Stream Sink – even the Media Sink

itself.

// get the StreamSink

streamSink = GetStreamSinkByMajorMediaType(mediaSink, majorMediaType);

// Set the object pointer to the media stream sink

hr = outSinkNode.SetObject(streamSink);

Thus the output Topology Node is created and, once created, is added to the Topology.

Once the nodes are all added, the Topology will contain four nodes. These are a source

and sink node for the audio and a source and sink node for the video. The nodes are

connected up in exactly the same way as the Topology nodes in the previous example:

audio source node to audio sink node and video source node to video sink node.

You will note that the main difference between this example and the previous one is

that we now have two parallel branches in the Topology. We have one Media Source

with two streams feeding the branches and one Media Sink with two streams

consuming the branches. This is where the power of the Media Session comes in. You do

not have to do anything to move the data or synchronize its processing. The Media

Session and Pipeline take care of all of that and you are sure the data will arrive at the

sink at the proper time even though it is on two separate branches. The same is true

when you have even more complicated Topologies with multiple Media Sources,

Transforms, Tees and multiple Media Sinks

Practical WMF Architectures

188

The remaining item which should be noted in regards to multiple streams in the

Topology is that the connection process is not especially intuitive. The

PrepareSessionAndTopology function connects them up with two statements as

shown below.

hr = sourceVideoNode.ConnectOutput(0, outputSinkNodeVideo, 0);

hr = sourceAudioNode.ConnectOutput(0, outputSinkNodeAudio, 0);

Both of the ConnectOutput() calls use an ID of 0 for the input stream and 0 for the

output stream – yet the Media Source and Media Sink both have two streams each.

How can this be? Well, the ConnectOutput() call on the Topology Node refers only to

the stream the node “knows about”. In the above example, each node still has only one

stream (stream ID 0 on the node) and so the above code works. On a “Tee” node you

would have two output streams on the node and hence one of them would be the

stream with an ID of 1.

Another thing to note is that we did not need to use any of this “Stream Sink” stuff

when dealing with the MP3 file sink - although we probably could have done it that way

if we wished. As was mentioned previously, each sink is somewhat different.

IMPLEMENTING THE READER-WRITER ARCHITECTURE

There are occasions where you need an easy way to read media data from a file. Of

course it is trivial in C# to read a media file as binary data – but if you do all of the

formatting and context is lost. For example, if you read the file as a binary object your

code would need to understand the underlying file structure in considerable detail in

order to present your application with a frame by frame sequence of video data. The

Source Reader component solves this problem for reading media files and the Sink

Writer component solves the similar problem when writing files.

Ultimately, the Source Reader presents your application

with a sequence of Media Samples from a media file. The

Sink Writer accepts a sequence of Media Samples from

your application and writes them to a file.

Since the Source Reader provides Media Samples and the Sink Writer consumes them,

they can make a nice binary pair with one feeding the other. Many of the examples you

find on the Internet (and indeed some of the Tanta Samples) will structure the

application that way. It should be emphasized that this Reader-Writer pairing is not a

requirement. A Source Reader can be used independently as can a Sink Writer.

 Practical WMF Architectures

 189

In this book, an application that uses either a Source Reader or a Sink Writer (or both)

with no sign of a Media Session or Pipeline is considered to use the Reader-Writer

Architecture. Applications that use a Pipeline to feed a Sink Writer are considered to use

a Hybrid Architecture and you can read about them in the Implementing a Hybrid

Architecture section below.

As discussed in detail in the Synchronous vs Asynchronous Source Readers section of

The WMF Components chapter, there are two ways of obtaining data from a Source

Reader. Either your application can sit in a loop and request each Media Sample in turn

or it can set up a special Callback Object which provides a similar mechanism in a

separate thread. In the section below, let’s take a look at the first case – the simple “sit

in a loop and consume the data” Reader-Writer Synchronous processing model.

THE SYNCHRONOUS READER-WRITER ARCHITECTURE

The TantaAudioFileCopyViaReaderWriter Sample Project implements a very simple

Reader-Writer Synchronous Mode Architecture. It is the exact Reader-Writer analog of

the Pipeline based TantaAudioFileCopyViaPipelineMP3Sink Sample Project - all the

application does is copy an MP3 file.

Synchronous Mode processing also follows a general pattern. As a broad overview the

steps are as follows…

1. Create the Source Reader by specifying the file name.

2. Create the Sink Writer by specifying the file name.

3. Look at each stream the Source Reader provides and find the

one with the Media Major Type you are interested in.

4. Look in that stream and find the Media Type you are interested

in. Make the chosen Media Type “current” on the stream.

5. Add a Stream to the Sink Writer and tell it the Media Type of the

Media Samples it will be writing to the disk.

6. Tell the new stream on the Sink Writer the Media Type it will be

receiving as input.

7. Tell the Sink Writer to begin writing – this initializes the file

8. Sit in a loop and call ReadSample() on the Source Reader and

WriteSample() on the Sink Writer until there are no more

Media Samples left.

9. Tell the Sink Writer to close the file.

Practical WMF Architectures

190

Of course, if you are not using a Sink Writer, and are processing the data provided by

the Source Reader yourself, then you can ignore the steps which reference the Sink

Writer. Unlike the discussion of the Pipeline Architecture, we will not write out a second

list with a more extensive sequence of actions - there isn’t one. The Reader-Writer

Architecture is designed to be simple. Instead let’s look at some real code. The

CopyFile() function in the frmMain class of the TantaAudioFileCopyViaReaderWriter

Sample Project does all the work.

public void CopyFile(string sourceFileName, string outputFileName)

{

 HResult hr;

 int sinkWriterOutputAudioStreamId = -1;

 int audioSamplesProcessed = 0;

 bool audioStreamIsAtEOS = false;

 int sourceReaderAudioStreamId=-1;

 // not keen on endless loops. This is the maximum number

 // of streams we will check in the source reader.

 const int MAX_SOURCEREADER_STREAMS = 100;

 // create the SourceReader

 sourceReader = TantaWMFUtils.CreateSourceReaderSyncFromFile(

 sourceFileName, DEFAULT_ALLOW_HARDWARE_TRANSFORMS);

 if (sourceReader == null)

 {

 // we failed

 throw new Exception("CopyFile: Failed to create SourceReader, Nothing will work.");

 }

 // create the SinkWriter

 sinkWriter = TantaWMFUtils.CreateSinkWriterFromFile(

 outputFileName, DEFAULT_ALLOW_HARDWARE_TRANSFORMS);

 if (sinkWriter == null)

 {

 // we failed

 throw new Exception("CopyFile: Failed to create Sink Writer, Nothing will work.");

 }

 // find the first audio stream and identify the default Media Type

 // it is using. We could look into the stream and enumerate all of the

 // types on offer aand choose one from the list - but for a copy operation

 // the default will be quite suitable.

 sourceReaderNativeAudioMediaType = null;

 for (int streamIndex =0; streamIndex < MAX_SOURCEREADER_STREAMS; streamIndex++)

 {

 IMFMediaType workingType = null;

 Guid guidMajorType = Guid.Empty;

 // the the major media type - we are looking for audio

 hr = sourceReader.GetNativeMediaType(streamIndex, 0, out workingType);

 if (hr == HResult.MF_E_NO_MORE_TYPES) break;

 if (hr == HResult.MF_E_INVALIDSTREAMNUMBER) break;

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed GetNativeMediaType, retVal=" + hr.ToString());

 }

 if (workingType == null)

 {

 // we failed

 throw new Exception("failed on call to GetNativeMediaType, workingType == null");

 }

 // what major type does this stream have?

 hr = workingType.GetMajorType(out guidMajorType);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to GetMajorType failed. Err=" + hr.ToString());

 }

 if (guidMajorType == null)

 {

 throw new Exception("call to GetMajorType failed. guidMajorType == null");

 Practical WMF Architectures

 191

 }

 // test for audio (there can be others)

 if ((guidMajorType == MFMediaType.Audio))

 {

 // this stream represents a audio type

 sourceReaderNativeAudioMediaType = workingType;

 sourceReaderAudioStreamId = streamIndex;

 // the sourceReaderNativeAudioMediaType will be released elsewhere

 break;

 }

 // if we get here release the type - we do not use it

 if (workingType != null)

 {

 Marshal.ReleaseComObject(workingType);

 workingType = null;

 }

 }

 // at this point we expect we can have a native video or a native audio media type

 // or both, but not neither. if we don't we cannot carry on

 if (sourceReaderNativeAudioMediaType == null)

 {

 // we failed

 throw new Exception("failed sourceReaderNativeAudioMediaType == null");

 }

 // set the media type on the reader - this is the media type the source reader will output

 // this does not have to match the media type in the file. If it does not the Source Reader

 // will attempt to load a transform to perform the conversion. In this case we know it

 // matches because the type we are using IS the same media type we got from the stram

 hr = sourceReader.SetCurrentMediaType(

 sourceReaderAudioStreamId, null,

 sourceReaderNativeAudioMediaType);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed SetCurrentMediaType(a), retVal=" + hr.ToString());

 }

 // add a stream to the sink writer. The mediaType specifies the format of the

 // samples that will be written to the file. Note that it does not necessarily

 // need to match the format of the samples we provide to the sink writer. In

 // this case, because we are copying a file, the media type

 // we write to disk IS the media type the source reader reads from the disk.

 hr = sinkWriter.AddStream(sourceReaderNativeAudioMediaType,

 out sinkWriterOutputAudioStreamId);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed adding the output stream, retVal=" + hr.ToString());

 }

 // Set the input format for a stream on the sink writer. Note the use of

 // the stream index here. The input format does not have to match the output

 // format that is written to the media sink. If the formats do not match, this call

 // attempts to load an transform that can convert from the input format to the

 // target format. If it cannot find one, and this is not a sure thing,

 // it will throw an exception.

 hr = sinkWriter.SetInputMediaType(sinkWriterOutputAudioStreamId,

 sourceReaderNativeAudioMediaType, null);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed SetInputMediaType(a), retVal=" + hr.ToString());

 }

 // begin writing on the sink writer

 hr = sinkWriter.BeginWriting();

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("CopyFile: failed BeginWriting, retVal=" + hr.ToString());

 }

 // we sit in a loop here and get the sample from the source reader and write it out

 // to the sink writer. An EOS (end of sample) value in the flags will signal the end.

 // Note the application will appear to be locked up while we are in here. We are ok

 // with this because it is quick and we want to keep things simple

 while (true)

Practical WMF Architectures

192

 {

 int actualStreamIndex;

 MF_SOURCE_READER_FLAG actualStreamFlags;

 long timeStamp = 0;

 IMFSample workingMediaSample = null;

 // Request the next sample from the media source. Note that this could be

 // any type of media sample (video, audio, subtitles etc). We do not know

 // until we look at the stream ID. We saved the stream ID earlier when

 // we obtained the media types and so we can branch based on that.

 // In reality since we only set up one stream (audio) this will always be

 // the audio stream - but there is no need to assume this and the

 // TantaVideoFileCopyViaReaderWriter demonstrates an example with two

 // streams (audio and video)

 hr = sourceReader.ReadSample(

 TantaWMFUtils.MF_SOURCE_READER_ANY_STREAM,

 0,

 out actualStreamIndex,

 out actualStreamFlags,

 out timeStamp,

 out workingMediaSample

);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed ReadSample on the reader, retVal=" + hr.ToString());

 }

 // the sample may be null if either end of stream or a stream tick is returned

 if (workingMediaSample == null)

 {

 // just ignore, the flags will have the information we need.

 }

 else

 {

 // the sample is not null

 if (actualStreamIndex == sourceReaderAudioStreamId)

 {

 // audio data

 // ensure discontinuity is set for the first sample in each stream

 if (audioSamplesProcessed == 0)

 {

 // audio data

 hr = workingMediaSample.SetUINT32(

 MFAttributesClsid.MFSampleExtension_Discontinuity, 1);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed SetUINT32, retVal=" + hr.ToString());

 }

 // remember this - we only do it once

 audioSamplesProcessed++;

 }

 hr = sinkWriter.WriteSample(sinkWriterOutputAudioStreamId, workingMediaSample);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed WriteSample, retVal=" + hr.ToString());

 }

 }

 // release the sample

 if (workingMediaSample != null)

 {

 Marshal.ReleaseComObject(workingMediaSample);

 workingMediaSample = null;

 }

 }

 // do we have a stream tick event?

 if ((actualStreamFlags & MF_SOURCE_READER_FLAG.StreamTick)!=0)

 {

 if (actualStreamIndex == sourceReaderAudioStreamId)

 {

 // audio stream

 hr = sinkWriter.SendStreamTick(sinkWriterOutputAudioStreamId, timeStamp);

 }

 else

 {

 }

 Practical WMF Architectures

 193

 }

 // is this stream at an END of Segment

 if ((actualStreamFlags & MF_SOURCE_READER_FLAG.EndOfStream) !=0)

 {

 // We have an EOS - but is it on the audio channel?

 if (actualStreamIndex == sourceReaderAudioStreamId)

 {

 // audio stream

 // have we seen this before?

 if (audioStreamIsAtEOS == false)

 {

 hr = sinkWriter.NotifyEndOfSegment(sinkWriterOutputAudioStreamId);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("NotifyEndOfSegment, retVal=" + hr.ToString());

 }

 audioStreamIsAtEOS = true;

 }

 // audio stream

 }

 else

 {

 }

 // our exit condition depends on which streams are in use

 if (sourceReaderNativeAudioMediaType != null)

 {

 // only audio is active, if the audio stream is EOS we can leave

 if (audioStreamIsAtEOS == true) break;

 }

 }

 } // bottom of endless for loop

 hr = sinkWriter.Finalize_();

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed sinkWriter.Finalize(), retVal=" + hr.ToString());

 }

}

Source: TantaAudioFileCopyViaReaderWriter::frmMain::CopyFile

Rather lengthy isn’t it? Well, yes it is, but if we review it section by section we can see

there is a logical progression which mirrors the steps in the list above. The first thing we

do is create the Source Reader and Sink Writer. Like the Pipeline Architecture

discussion, both of these actions have been factored out in to static function calls in the

TantaWMFUtils class. Unlike the Pipeline Architecture, both of these operations are

pretty straight forward (even creating the Sink Writer).

sourceReader = TantaWMFUtils.CreateSourceReaderSyncFromFile(sourceFileName,

 DEFAULT_ALLOW_HARDWARE_TRANSFORMS);

sinkWriter = TantaWMFUtils.CreateSinkWriterFromFile(outputFileName,

 DEFAULT_ALLOW_HARDWARE_TRANSFORMS);

In the interests of saving space, the code for these two functions will not be discussed

here. They were both previously reviewed in the Source Reader and Sink Writer section

of The WMF Components chapter. One point to note though is the

DEFAULT_ALLOW_HARDWARE_TRANSFORMS parameter – recall that both the Source Reader

and Sink Writer will automatically load Transforms (if they can find them) to reconcile

the Media Type and format they receive to the Media Type and format they are

expected to output. Sometimes these Transforms can be hardware (as opposed to

purely software) and this parameter controls that choice.

Practical WMF Architectures

194

The next step is to sit in a loop and identify the stream on the output that we wish to

use. Unlike with the Pipeline Architecture, all we will get here is an ID value of the

stream rather than an IMFMediaStream object.

sourceReaderNativeAudioMediaType = null;

for (int streamIndex =0; streamIndex < MAX_SOURCEREADER_STREAMS; streamIndex++)

{

 IMFMediaType workingType = null;

 Guid guidMajorType = Guid.Empty;

 // the the major media type - we are looking for audio

 hr = sourceReader.GetNativeMediaType(streamIndex, 0, out workingType);

 if (hr == HResult.MF_E_NO_MORE_TYPES) break;

 if (hr == HResult.MF_E_INVALIDSTREAMNUMBER) break;

 // what major type does this stream have?

 hr = workingType.GetMajorType(out guidMajorType);

 // test for audio (there can be others)

 if ((guidMajorType == MFMediaType.Audio))

 {

 // this stream represents a audio type

 sourceReaderNativeAudioMediaType = workingType;

 sourceReaderAudioStreamId = streamIndex;

 // the sourceReaderNativeAudioMediaType will be released elsewhere

 break;

 }

 // if we get here release the type - we do not use it

 if (workingType != null)

 {

 Marshal.ReleaseComObject(workingType);

 workingType = null;

 }

}

Once the loop has exited we will have the ID of the stream containing the audio data

and also the default Media Type on that stream. It should be noted here that there are

some things that are not done in the above code. For example, there may well be

numerous Media Types on offer within the stream. We could enumerate the Media

Types and make one of them “current” by using the SetCurrentMediaType() call. We

do not do that here because we are doing a file copy operation. This means default

output Media Type is probably good enough and the Source Reader or Sink Writer will

automatically handle the conversions for us anyways if necessary. That, in essence, is

why the Source Reader and Sink Writer are so popular – the programmer does not have

to care as much about Media Type conversions. The only other place you get a free pass

like that is with the Pipeline Architecture in file playback situations. Also observe that, in

the above code section, any Media Types that are not used are released – using a

Source Reader or Sink Writer does not relieve you of that responsibility.

So, we now have a Media Type and the ID of a suitable stream on the Source Reader.

The next thing we do is use this Media Type to define the output Media Type of the

Source Reader.

// set the media type on the reader - this is the media type the source reader will output

// this does not have to match the media type in the file. If it does not the Source Reader

// will attempt to load a transform to perform the conversion. In this case we know it

// matches because the type we are using IS the same media type we got from the stram

hr = sourceReader.SetCurrentMediaType(sourceReaderAudioStreamId, null,

 Practical WMF Architectures

 195

 sourceReaderNativeAudioMediaType);

Note the use of the sourceReaderAudioStreamId variable as a parameter. There is a

shortcut you will sometimes see in use which is the use of a special hex stream ID value

of 0xfffffffd. This tells the Source Reader to “just use the first audio stream you find”

and is commonly defined as the constant MF_SOURCE_READER_FIRST_AUDIO_STREAM. If

you see that constant in use, you will probably also find the application did not

enumerate the streams to find the Media Type. There is a similar

MF_SOURCE_READER_FIRST_VIDEO_STREAM constant for video data.

Proceeding onwards, the code adds a stream to the Sink Writer. Note that a stream on a

Sink Writer is called a Stream Sink and is of type IMFStreamSink. A Stream Sink is not a

Media Stream (an IMFMediaStream) and the IMFStreamSink and IMFMediaSink

interfaces do not inherit from each other.

The Media Type is also passed in when the Stream Sink is created and this defines the

output format of the Media Samples which the Sink Writer will write.

// add a stream to the sink writer.

// The mediaType specifies the format of the samples that will be written

// to the file. Note that it does not necessarily need to match the format of the samples

// we provide to the sink writer. In this case, because we are copying a file, the media type

// we write to disk IS the media type the source reader reads from the disk.

hr = sinkWriter.AddStream(sourceReaderNativeAudioMediaType, out sinkWriterOutputAudioStreamId);

As can be seen, the above code simply uses the Media Type obtained from the stream

on the Source Reader (the sourceReaderNativeAudioMediaType) to configure the

output format. It does not have to be this way and if you specify a different Media Type

then your copy operation will be a “media conversion” application.

At this point, the Sink Writer knows the Media Type in which it will write out the data –

but what about the Media Type it will be receiving the data? This is configured in the

next step.

// Set the input format for a stream on the sink writer. Note the use of the stream index here

// The input format does not have to match the output format that is written to the media sink

// If the formats do not match, this call attempts to load an transform that can convert from

// the input format to the target format. If it cannot find one, and this is not a sure thing,

// it will throw an exception.

hr = sinkWriter.SetInputMediaType(sinkWriterOutputAudioStreamId,

 sourceReaderNativeAudioMediaType, null);

Again, to keep things simple, we are again using the Media Type obtained from the

stream on the Source Reader. This has to match the output Media Type of the Source

Reader or we would have to perform some conversions on it ourselves in between

reading the data and writing it. As mentioned previously, this input Media Type does not

have to match the actual Media Type of the Media Samples being written – automatic

conversions will be invoked if necessary.

Practical WMF Architectures

196

Both the Source Reader and Sink Writer are now configured. The next step just

initializes the output file on the Sink Writer.

// begin writing on the sink writer

hr = sinkWriter.BeginWriting();

Note that the above statement just initializes the Sink Writer and creates the output file.

No data is being transferred yet. We have to do that task ourselves in a loop – as is

shown in the next code block.

// we sit in a loop here and get the sample from the source reader and write it out

// to the sink writer. An EOS (end of sample) value in the flags will signal the end.

// Note the application will appear to be locked up while we are in here. We are ok

// with this because it is quick and we want to keep things simple

while (true)

{

 int actualStreamIndex;

 MF_SOURCE_READER_FLAG actualStreamFlags;

 long timeStamp = 0;

 IMFSample workingMediaSample = null;

 // Request the next sample from the media source. Note that this could be

 // any type of media sample (video, audio, subtitles etc). We do not know

 // until we look at the stream ID. We saved the stream ID earlier when

 // we obtained the media types and so we can branch based on that.

 // In reality since we only set up one stream (audio) this will always be

 // the audio stream - but there is no need to assume this and the

 // TantaVideoFileCopyViaReaderWriter demonstrates an example with two

 // streams (audio and video)

 hr = sourceReader.ReadSample(

 TantaWMFUtils.MF_SOURCE_READER_ANY_STREAM,

 0,

 out actualStreamIndex,

 out actualStreamFlags,

 out timeStamp,

 out workingMediaSample

);

 // the sample may be null if either end of stream or a stream tick is returned

 if (workingMediaSample == null)

 {

 // just ignore, the flags will have the information we need.

 }

 else

 {

 // the sample is not null

 if (actualStreamIndex == sourceReaderAudioStreamId)

 {

 // audio data

 // ensure discontinuity is set for the first sample in each stream

 if (audioSamplesProcessed == 0)

 {

 // audio data

 hr = workingMediaSample.SetUINT32(

 MFAttributesClsid.MFSampleExtension_Discontinuity, 1);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("CopyFile: SetUINT32, retVal=" + hr.ToString());

 }

 // remember this - we only do it once

 audioSamplesProcessed++;

 }

 hr = sinkWriter.WriteSample(sinkWriterOutputAudioStreamId, workingMediaSample);

 }

 }

 // release the sample

 if (workingMediaSample != null)

 {

 Marshal.ReleaseComObject(workingMediaSample);

 workingMediaSample = null;

 }

 }

 Practical WMF Architectures

 197

... code to detect the end of the stream removed

} // bottom of endless for loop

The code which detects the end of the data on the stream has been removed. If we

ignore that code for the moment we can see that the loop really is very simple. The

process runs as follows: we loop endlessly, and call ReadSample() on the Source

Reader. If the Media Sample is the first one that we have seen, a

MFSampleExtension_Discontinuity flag is set in it’s Attributes. Either way, the next

step is to call WriteSample() on the Sink Writer and then release the Media Sample

object. Read, write and release – that is all we are doing until we get the signal that the

stream has ended.

Reading a null Media Sample from the Source Reader does not necessarily imply that

the stream is at an end. The Source Reader will use it to send signals of many types to

the object processing the data (i.e. the application). The flags value received on the

ReadSample() call will allow us to interpret the messages. The sample code block below

shows how this process works.

// do we have a stream tick event?

if ((actualStreamFlags & MF_SOURCE_READER_FLAG.StreamTick)!=0)

{

 if (actualStreamIndex == sourceReaderAudioStreamId)

 {

 // audio stream

 hr = sinkWriter.SendStreamTick(sinkWriterOutputAudioStreamId, timeStamp);

 }

 else

 {

 }

}

// is this stream at an END of Segment

if ((actualStreamFlags & MF_SOURCE_READER_FLAG.EndOfStream) !=0)

{

 // We have an EOS - but is it on the audio channel?

 if (actualStreamIndex == sourceReaderAudioStreamId)

 {

 // audio stream

 // have we seen this before?

 if (audioStreamIsAtEOS == false)

 {

 hr = sinkWriter.NotifyEndOfSegment(sinkWriterOutputAudioStreamId);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("CopyFile: NotifyEndOfSegment, retVal=" + hr.ToString());

 }

 audioStreamIsAtEOS = true;

 }

 // audio stream

 }

 else

 {

 }

 // our exit condition depends on which streams are in use

 if (sourceReaderNativeAudioMediaType != null)

 {

 // only audio is active, if the audio stream is EOS we can leave

 if (audioStreamIsAtEOS == true) break;

 }

}

Practical WMF Architectures

198

If the MF_SOURCE_READER_FLAG.StreamTick flag is present, all we need to do is send

that message on to the Sink Writer along with the current timestamp. The Sink Writer

will know how to handle it.

If we have a MF_SOURCE_READER_FLAG.EndOfStream flag, we simply tell the Sink Writer

to close down with a NotifyEndOfSegment() call and then break out of the loop;

hr = sinkWriter.NotifyEndOfSegment(sinkWriterOutputAudioStreamId);

audioStreamIsAtEOS = true;

... some code

if (audioStreamIsAtEOS == true) break;

After the loop exits we have to ensure the Sink Writer closes down the output file

properly. The NotifyEndOfSegment() call does not do this.

hr = sinkWriter.Finalize_();

That is pretty much it as far as the Synchronous Reader-Writer Architecture goes. We

set up the Source Reader and Sink Writer and then then sit in a loop reading, writing and

passing on any messages we see. If we get an end of stream signal we tell the Sink

Writer about it and exit the loop. All-in-all it really is a pretty simple process.

DEALING WITH MULTIPLE STREAMS

You may have gotten the impression that because the Reader-Writer Architecture is

simpler to use than the Pipeline that it cannot handle multiple streams. This is definitely

not true. The TantaVideoFileCopyViaReaderWriter Sample project demonstrates the

process of copying an MP4 file and these have both video and audio streams.

We will not reproduce the entire two stream code from that project – if you are

interested have a look at the CopyFile function in the frmMain class of that project.

Let’s talk about the main differences though.

1. A single Source Reader and Sink Writer are used, as before.

2. The stream ID and Media Type of the first video stream in the

Source Reader are found.

3. The stream ID and Media Type of the first audio stream in the

Source Reader are found.

4. In exactly the same way that we did in the single stream

example, we configure the output Media Type on each Media

Stream of the Source Reader and create and set the Media Type

on each Sink Stream of the Sink Writer.

 Practical WMF Architectures

 199

5. We enter a loop, and read the Media Sample. This Media Sample

will contain either audio or video data. We detect this and take

care to write it to the appropriate stream on the Media Sink.

6. The close down process is slightly more complicated because we

have to get an MF_SOURCE_READER_FLAG.EndOfStream flag on

both streams before we can quit the loop.

Let us have a closer look at the loop which processes multiple streams.

// we sit in a loop here and get the sample from the source reader and write it out

// to the sink writer. An EOS (end of sample) value in the flags will signal the end.

while (true)

{

 int actualStreamIndex;

 MF_SOURCE_READER_FLAG actualStreamFlags;

 long timeStamp = 0;

 IMFSample workingMediaSample = null;

 // Request the next sample from the media source. Note that this could be

 // any type of media sample (video, audio, subtitles etc). We do not know

 // until we look at the stream ID. We saved the stream ID earlier when

 // we obtained the media types and so we can branch based on that.

 hr = sourceReader.ReadSample(

 TantaWMFUtils.MF_SOURCE_READER_ANY_STREAM,

 0,

 out actualStreamIndex,

 out actualStreamFlags,

 out timeStamp,

 out workingMediaSample

);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("CopyFile: Failed ReadSample, retVal=" + hr.ToString());

 }

 // the sample may be null if either end of stream or a stream tick is returned

 if (workingMediaSample == null)

 {

 // just ignore, the flags will have the information we need.

 }

 else

 {

 // the sample is not null

 if (actualStreamIndex == sourceReaderAudioStreamId)

 {

 // audio data

 // ensure discontinuity is set for the first sample in each stream

 if (audioSamplesProcessed == 0)

 {

 // audio data

 hr = workingMediaSample.SetUINT32(

 MFAttributesClsid.MFSampleExtension_Discontinuity, 1);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("CopyFile: Failed SetUINT32, retVal=" + hr.ToString());

 }

 // remember this - we only do it once

 audioSamplesProcessed++;

 }

 hr = sinkWriter.WriteSample(sinkWriterOutputAudioStreamId, workingMediaSample);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("CopyFile: WriteSample, retVal=" + hr.ToString());

 }

 }

 else if (actualStreamIndex == sourceReaderVideoStreamId)

 {

 // video data

 // ensure discontinuity is set for the first sample in each stream

 if (videoSamplesProcessed == 0)

Practical WMF Architectures

200

 {

 // video data

 hr = workingMediaSample.SetUINT32(

 MFAttributesClsid.MFSampleExtension_Discontinuity, 1);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed SetUINT32, retVal=" + hr.ToString());

 }

 // remember this - we only do it once

 videoSamplesProcessed++;

 }

 hr = sinkWriter.WriteSample(sinkWriterOutputVideoStreamId, workingMediaSample);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed WriteSample, retVal=" + hr.ToString());

 }

 }

 // release the sample

 if (workingMediaSample != null)

 {

 Marshal.ReleaseComObject(workingMediaSample);

 workingMediaSample = null;

 }

 }

 // do we have a stream tick event?

 if ((actualStreamFlags & MF_SOURCE_READER_FLAG.StreamTick)!=0)

 {

 if (actualStreamIndex == sourceReaderVideoStreamId)

 {

 // video stream

 hr = sinkWriter.SendStreamTick(sinkWriterOutputVideoStreamId, timeStamp);

 }

 else if (actualStreamIndex == sourceReaderAudioStreamId)

 {

 // audio stream

 hr = sinkWriter.SendStreamTick(sinkWriterOutputAudioStreamId, timeStamp);

 }

 else

 {

 }

 }

 // is this stream at an END of Segment

 if ((actualStreamFlags & MF_SOURCE_READER_FLAG.EndOfStream) !=0)

 {

 // We have an EOS - but is it on the video or audio channel?

 // we have to get it on both

 if (actualStreamIndex == sourceReaderVideoStreamId)

 {

 // video stream

 // have we seen this before?

 if (videoStreamIsAtEOS == false)

 {

 hr = sinkWriter.NotifyEndOfSegment(sinkWriterOutputVideoStreamId);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed NotifyEndOfSegment, retVal=" + hr.ToString());

 }

 videoStreamIsAtEOS = true;

 }

 }

 else if (actualStreamIndex == sourceReaderAudioStreamId)

 {

 // audio stream

 // have we seen this before?

 if (audioStreamIsAtEOS == false)

 {

 hr = sinkWriter.NotifyEndOfSegment(sinkWriterOutputAudioStreamId);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("Failed NotifyEndOfSegment, retVal=" + hr.ToString());

 }

 audioStreamIsAtEOS = true;

 }

 // audio stream

 Practical WMF Architectures

 201

 }

 else

 {

 }

 // our exit condition depends on which streams are in use

 if ((sourceReaderNativeVideoMediaType != null) &&

 (sourceReaderNativeAudioMediaType != null))

 {

 // if both streams are at EOS we can leave

 if ((videoStreamIsAtEOS == true) && (audioStreamIsAtEOS == true)) break;

 }

 else if (sourceReaderNativeVideoMediaType != null)

 {

 // only video is active, if the video stream is EOS we can leave

 if (videoStreamIsAtEOS == true) break;

 }

 else if (sourceReaderNativeAudioMediaType != null)

 {

 // only audio is active, if the audio stream is EOS we can leave

 if (audioStreamIsAtEOS == true) break;

 }

 }

} // bottom of endless for loop

Source: TantaVideoFileCopyViaPipelineMP4Sink::frmMain::CopyFile

As mentioned previously, we will not discuss the multiple-stream case in detail here.

However, if you read down the above code block it becomes apparent that the presence

of multiple streams presents little problem for the Sink Writer. Note however, how the

code carefully checks for an end of stream signal on both streams before it breaks out of

the loop.

THE ASYNCHRONOUS READER-WRITER ARCHITECTURE

As discussed in the Synchronous vs Asynchronous Source Readers section of The WMF

Components chapter, the Asynchronous Reader-Writer Architecture was designed to

enable the loop which processes the ReadSample(), WriteSample() sequence to be

performed in a separate thread. If you think back to the previous section – both of the

sample projects used there will appear to be frozen or “locked-up” until the loop ends.

Even in those simple examples, it would probably have been better to spin up the

processing loop in a separate C# thread.

The ability of C# to easily send processing to separate threads has rendered the

Asynchronous Reader-Writer Architecture somewhat redundant in WMF.net.

Nonetheless you will see it used in various code examples around the Internet and it is

worthwhile understanding how it functions. The TantaCaptureToFileViaReaderWriter

Sample Project uses a Source Reader in Asynchronous Mode to process the video data

obtained from a webcam. A Sink Writer is used to save this information to the disk as an

MP4 file. In order to keep things simple, no audio data is processed – although a

separate Source Reader could easily be set up to obtain an audio stream from a

microphone which is then recorded alongside the video in the MP4 file.

Here is a broad overview of Asynchronous Reader-Writer Architecture.

Practical WMF Architectures

202

1. The Source Reader and Sink Writer are set up in the same way as

is done in Synchronous Mode.

2. A Callback Object implementing the IMFSourceReaderCallback

interface is given to the Source Reader when it is created.

3. The Source Reader returned will be an IMFSourceReaderAsync

object not an IMFSourceReader as in the Synchronous Mode.

4. The first ReadSample() call is made on the Source Reader

5. The Media Sample appears in a function of the Callback Object

and that function calls WriteSample() on the Media Sink and

then requests the next Media Sample with a ReadSample() call.

6. The loop proceeds inside the Callback Object via a sequence of

WriteSample() and ReadSample() calls until the stream runs

out of data.

All of the code of interest is in the TantaCaptureToFileViaReaderWriter Sample Project -

either in the CaptureToFile function of the frmMain class or in the

TantaSourceReaderCallbackHandler class itself. Let’s join the code in the

CaptureToFile function where we create the Asynchronous Source Reader.

... more code

// create a new Callback Object. This, once we get it all wired up, will act

// as a pump to move the data from the source to the sink

workingSourceReaderCallBackHandler = new TantaSourceReaderCallbackHandler();

// create the source reader

workingSourceReader = TantaWMFUtils.CreateSourceReaderAsyncFromDevice(currentDevice,

 workingSourceReaderCallBackHandler);

... more code

Source: TantaCaptureToFileViaReaderWriter::frmMain::CaptureToFile

The operation of the Tanta CreateSourceReaderAsyncFromDevice() function was

discussed in the Creating a Source Reader on a Device section of The WMF

Components chapter and will not be reproduced here. The main point to remember is

that, at this point, we now have an IMFSourceReaderAsync object and it knows about

the Callback Object. The next thing we do is give the Callback Object the information it

needs.

... more code

// now set the source and the sink in the Callback Object. It needs to know these

// in order to operate

workingSourceReaderCallBackHandler.SourceReader = workingSourceReader;

workingSourceReaderCallBackHandler.SinkWriter = workingSinkWriter;

workingSourceReaderCallBackHandler.InitForFirstSample();

workingSourceReaderCallBackHandler.SourceReaderAsyncCallBackError =

 HandleSourceReaderAsyncCallBackErrors;

... more code

Source: TantaCaptureToFileViaReaderWriter::frmMain::CaptureToFile

 Practical WMF Architectures

 203

As we usually do with Callback Objects in the Tanta samples, we set up a Delegate/Event

Mechanism to pass information back to the application. In this particular case we only

have an error handler, any notification type events sent by the Source Reader will be

handled within the Callback Object itself.

The data will be entirely processed within the OnReadSample() function of the Callback

Object but before we get to that let us look at the action that triggers the first

appearance of the Media Sample in that location.

... more code

// Request the first video frame from the media source. The TantaSourceReaderCallbackHandler

// set up earlier will be invoked and it will continue requesting and processing video

// frames after that.

hr = workingSourceReader.ReadSample(

 TantaWMFUtils.MF_SOURCE_READER_FIRST_VIDEO_STREAM,

 0,

 IntPtr.Zero,

 IntPtr.Zero,

 IntPtr.Zero,

 IntPtr.Zero

);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed first ReadSample on the reader, retVal=" + hr.ToString());

}

... more code

Source: TantaCaptureToFileViaReaderWriter::frmMain::CaptureToFile

Yes, it is our old friend the ReadSample() call. If you read on past that point you will see

that, other than a few lines of admin code and some ReleaseComObject() calls to clean

up, the code exits the CaptureToFile function and the entire copy process proceeds

independently in its own thread within in the Callback Object.

The OnReadSample function in the Callback Object is similarly straightforward. We will

reproduce it here in its entirety so you can see the flow of control.

/// +=

/// <summary>

/// This gets called when a Called IMFSourceReader.ReadSample method completes

/// (assuming the SourceReader has been given this class during setup with

/// an attribute of MFAttributesClsid.MF_SOURCE_READER_ASYNC_CALLBACK).

///

/// The first ReadSample triggers it after that it continues by itself

/// </summary>

/// <param name="hrStatus">The status code. If an error occurred while

/// processing the next sample, this parameter contains the error code.</param>

/// <param name="streamIndex">The zero-based index of the stream that

/// delivered the sample.</param>

/// <param name="streamFlags">A bitwise OR of zero or more flags from the

/// MF_SOURCE_READER_FLAG enumeration.</param>

/// <param name="sampleTimeStamp">The time stamp of the sample, or the time

/// of the stream event indicated in streamFlags. The time is given

/// in 100-nanosecond units. </param>

/// <param name="mediaSample">A pointer to the IMFSample interface of a media sample.

/// This parameter might be NULL.</param>

/// <returns>Returns an HRESULT value. Reputedly, the source reader

/// ignores the return value.</returns>

/// <history>

/// 01 Nov 18 Cynic - Started

/// </history>

public HResult OnReadSample(HResult hrStatus, int streamIndex,

Practical WMF Architectures

204

 MF_SOURCE_READER_FLAG streamFlags, long sampleTimeStamp,

 IMFSample mediaSample)

{

 HResult hr = HResult.S_OK;

 try

 {

 lock (this)

 {

 // are we capturing? if not leave

 if (IsCapturing() == false)

 {

 return HResult.S_OK;

 }

 // have we got an error?

 if (Failed(hrStatus))

 {

 string errMsg = "OnReadSample, Error on call =" + hrStatus.ToString();

 SourceReaderAsyncCallBackError(this, errMsg, null);

 return hrStatus;

 }

 // have we got a sample? It seems this can be null on the first sample

 // in after the ReadSample that triggered this. So we just ignore it

 // and request the next to get things rolling

 if (mediaSample != null)

 {

 // we have a sample, if so is it the first non null one?

 if (isFirstSample)

 {

 // yes it is set up our timestamp

 firstSampleBaseTime = sampleTimeStamp;

 isFirstSample = false;

 }

 // write the sample out

 hr = sinkWriter.WriteSample(0, mediaSample);

 if (Failed(hr))

 {

 string errMsg = "OnReadSample, Error on WriteSample =" + hr.ToString();

 SourceReaderAsyncCallBackError(this, errMsg, null);

 return hr;

 }

 }

 // Read another sample.

 hr = (sourceReader as IMFSourceReaderAsync).ReadSample(

 TantaWMFUtils.MF_SOURCE_READER_FIRST_VIDEO_STREAM,

 0,

 IntPtr.Zero, // actual

 IntPtr.Zero, // flags

 IntPtr.Zero, // timestamp

 IntPtr.Zero // sample

);

 if (Failed(hr))

 {

 string errMsg = "OnReadSample, Error on ReadSample =" + hr.ToString();

 SourceReaderAsyncCallBackError(this, errMsg, null);

 return hr;

 }

 }

 }

 catch (Exception ex)

 {

 if (SourceReaderAsyncCallBackError != null)

 {

 SourceReaderAsyncCallBackError(this, ex.Message, ex);

 }

 }

 finally

 {

 SafeRelease(mediaSample);

 }

 return hr;

}

Source: TantaCaptureToFileViaReaderWriter::TantaSourceReaderCallbackHandler::OnReadSample

 Practical WMF Architectures

 205

As you can see, the above code is not much more than the simple Synchronous Mode

ReadSample(), WriteSample() loop except that in this particular case there is no need

for any code to detect the end of the stream. The reason for this is simple, since the

media data is coming off of a webcam there is no end to the stream. The capturing

process ends when the user presses the “Stop Capture” button on the GUI. Since the

OnReadSample code executes in a thread provided by the Source Reader the users

screen remains unaffected and is continuously available.

Other things to note in the OnReadSample function are that the parameters passed in

are pretty much identical to the ones you would get back from a ReadSample() call on

the Source Reader operating in Synchronous Mode.

In addition, particularly note that that the initial ReadSample() in the main application

form triggered the first call to the OnReadSample function and the ReadSample() call at

the bottom of that function ensures the next Media Sample will arrive in the same way.

In other words, the OnReadSample function effectively triggers itself once it has been set

running. Note also that everything happens inside a Lock() construct. The Source

Reader shouldn’t send a new Media Sample until the currently executing

OnReadSample() call returns - but it doesn’t hurt to be sure.

The remainder of the TantaCaptureToFileViaReaderWriter Sample Project will be

discussed in more detail in the Capture with a Reader-Writer Architecture section of

the Capturing Camera Data chapter.

IMPLEMENTING A HYBRID ARCHITECTURE

Now that you know about the Pipeline Architecture and the Reader-Writer Architecture

the following statement should make sense to you.

A Hybrid Architecture is simply a Pipeline Architecture in

which one or more of the components of the Pipeline

intercepts the Media Samples and feeds copies of them to

a Sink Writer.

Thus, in a Hybrid Architecture, the data still proceeds from the Media Source to the

Media Sink under the control of a Media Session. The Topology can be as complex as

any other standard Pipeline you might wish to make.

Practical WMF Architectures

206

The components that intercept the Media Samples as they

pass through the Pipeline and pass them to a Sink Writer

are either a specialized Media Sink designed for that

purpose or a custom user written Transform.

The name of the specialized Media Sink is called the Sample Grabber Sink and both the

TantaAudioFileCopyViaPipelineAndWriter and the

TantaVideoFileCopyViaPipelineAndWriter Sample Projects implement it. The difference

between the two is, as usual, that the TantaVideoFileCopyViaPipelineAndWriter project

implements the process with two streams (audio and video).

The usage of a Transform to intercept the samples and feed them to a Sink Writer is not

documented and there do not seem to be any other examples of that technique

available on the Internet at the time this book was written. The

MFTTantaSampleGrabber_Sync class in the TantaCaptureToScreenAndFile Sample

Project implements this methodology. This technique was chosen both for

demonstration purposes, and because it really simplified the requirement to repeatedly

turn video capturing on and off on a video pipeline while still recording the full stream

of data to a file. Normally this sort of thing would be done by introducing a Tee node

into the Topology and the resulting two branches would feed both an MP4 File Sink and

a Sample Grabber Sink.

We will leave a discussion of the MFTTantaSampleGrabber_Sync class in the

TantaCaptureToScreenAndFile Sample Project to the Capture with a Hybrid

Architecture section of the Capturing Camera Data chapter since it is more relevant

there. For now, let’s take a look at the Sample Grabber Sink and see how it is configured

and how it passes the media data to a Sink Writer. The code section below is taken from

the TantaAudioFileCopyViaPipelineAndWriter Sample Project.

The process of setting up the Topology is completely standard (as discussed in the

Implementing the Pipeline Architecture section above) until we get to the part where

the Media Sink is created.

... more code

// Create the sample grabber sink Callback Object.

sampleGrabberSinkCallback = new TantaSampleGrabberSinkCallback();

// create the activator for the sample grabber sink

hr = MFExtern.MFCreateSampleGrabberSinkActivate(currentAudioMediaType,

 sampleGrabberSinkCallback, out sampleGrabberSinkActivate);

if (sampleGrabberSinkActivate == null)

{

 throw new Exception("call to sampleGrabberSinkActivate == null");

}

// To run as fast as possible, set this attribute (requires Windows 7):

hr = sampleGrabberSinkActivate.SetUINT32(

 Practical WMF Architectures

 207

 MFAttributesClsid.MF_SAMPLEGRABBERSINK_IGNORE_CLOCK, 1)

... more code

Source: TantaAudioFileCopyViaPipelineAndWriter::frmMain::PrepareSessionAndTopology

The Sample Grabber Sink is a Microsoft supplied WMF component. The only way to

create one is through the use of an Activator and we get that Activator by calling the

static MFCreateSampleGrabberSinkActivate function. As you have no doubt noticed,

the Sample Grabber Sink requires the use of a Callback Object. The mechanism by which

the Media Samples are fed to the Sink Writer is analogous to the way the Asynchronous

Source Reader works. The Callback Object type in the above code is

TantaSampleGrabberSinkCallback but that class just directly inherits from the

Windows Media Foundation IMFSampleGrabberSinkCallback2 interface.

Also note the use of the MF_SAMPLEGRABBERSINK_IGNORE_CLOCK GUID as an Attribute

key. The Sample Grabber Sink requires this Attribute to be set to true (1) or the Media

Session will simply send the media data through the Pipeline at normal playback speeds.

Without this flag, the copy would take as long as the file takes to play. Neither the MP3

or MP4 file sink seem to require this flag – probably it is implemented by default.

The Sample Grabber Sink functions exactly like the MP3 (or MP4) file sink except that it

just discards every Media Sample it obtains. However, prior to calling

ReleaseComObject() on the Media Sample, the Sample Grabber Sink also calls the

OnProcessSample function in the Callback Object (or OnProcessSampleEx if you are

using the more advanced IMFSampleGrabberSinkCallback2 interface). Other than the

Callback Object, the Sample Grabber Sink is totally opaque to your program – you really

have no idea what is going on in there.

As with all Callback Objects, it is up to you to write them. The

TantaSampleGrabberSinkCallback is one example but you can structure them

however you wish – as long as you correctly support the required Callback interface.

The Sink Writer was also created in the PrepareSessionAndTopology function and,

after it was created, it was passed into the TantaSampleGrabberSinkCallback as a

class variable. Note that, as with the Asynchronous Source Reader Callback Object, only

an error handling event is needed. The Media Session still controls the entire Pipeline

and the Sink Writer and the Callback Object are not a part of it.

... more code

// open up the Sink Writer

workingSinkWriter = OpenSinkWriter(outputFileName);

if (workingSinkWriter == null)

{

 MessageBox.Show("OpenSinkWriter did not return a media sink. Cannot continue.");

 return;

}

Practical WMF Architectures

208

// now set the the sink in the Callback Object. It needs to know this

// in order to operate

sampleGrabberSinkCallback.SinkWriter = workingSinkWriter;

sampleGrabberSinkCallback.InitForFirstSample();

sampleGrabberSinkCallback.SampleGrabberAsyncCallBackError =

 HandleSampleGrabberAsyncCallBackErrors;

... more code

Source: TantaAudioFileCopyViaPipelineAndWriter::frmMain::PrepareSessionAndTopology

The Media Session is started up in the standard way, the Topology is resolved, and once

the Media Session is started the data begins to arrive in the OnProcessSampleEx

function of the Callback Object. The code for this function is listed below. In particular,

note that no Media Sample object is passed in on any of the parameters to the call.

/// +=

/// <summary>

/// Called when the sample grabber sink processes a sample. We can use this

/// to do what we want with the media data

/// </summary>

/// <param name="guidMajorMediaType">the media type</param>

/// <param name="sampleFlags">the sample flags</param>

/// <param name="sampleSize">the sample size</param>

/// <param name="sampleDuration">the sample duration</param>

/// <param name="sampleTimeStamp">the sample time</param>

/// <param name="sampleBuffer">the sample buffer</param>

/// <param name="sampleAttributes">the attributes for the sample</param>

/// <history>

/// 01 Nov 18 Cynic - Ported in

/// </history>

public HResult OnProcessSampleEx(Guid guidMajorMediaType, int sampleFlags,

 long sampleTimeStamp, long sampleDuration,

 IntPtr sampleBuffer, int sampleSize,

 IMFAttributes sampleAttributes)

{

 IMFSample outputSample = null;

 HResult hr;

 try

 {

 if(sinkWriter==null)

 {

 string errMsg = "OnProcessSample, Error sinkWriter==null";

 SampleGrabberAsyncCallBackError(this, errMsg, null);

 return HResult.E_FAIL;

 }

 // we have all the information we need to create a new output sample

 outputSample = TantaWMFUtils.CreateMediaSampleFromIntPtr(

 sampleFlags, sampleTimeStamp,

 sampleDuration, sampleBuffer, sampleSize, null);

 if (outputSample == null)

 {

 string errMsg = "outputSample == null";

 SampleGrabberAsyncCallBackError(this, errMsg, null);

 return HResult.E_FAIL;

 }

 // write the sample out

 hr = sinkWriter.WriteSample(sinkWriterMediaStreamId, outputSample);

 if (Failed(hr))

 {

 string errMsg = "Error on WriteSample =" + hr.ToString();

 SampleGrabberAsyncCallBackError(this, errMsg, null);

 return hr;

 }

 }

 finally

 {

 if(outputSample!=null)

 {

 Marshal.ReleaseComObject(outputSample);

 outputSample = null;

 }

 Practical WMF Architectures

 209

 }

 return HResult.S_OK;

}

Source: TantaAudioFileCopyViaPipelineAndWriter::TantaSampleGrabberSinkCallback::OnProcessSampleEx

The media data arrives in the OnProcessSampleEx function as an IntPtr to an

IMFMediaBuffer object. The Media Sink definitely does not want its data in that

format, so we wrap the Media Buffer in a Media Sample before handing it over. Since

this requirement is likely to come up reasonably often the conversion process has been

factored out into a static function call in the TantaWMFUtils library.

// we have all the information we need to create a new output sample

outputSample = TantaWMFUtils.CreateMediaSampleFromIntPtr(sampleFlags,

 sampleTimeStamp, sampleDuration, sampleBuffer, sampleSize, null);

Of course, a Media Sample has a lot more information in it other than a Media Buffer

and that is why we feed things like the timestamp and duration into the

CreateMediaSampleFromIntPtr() call. The authors of the Sample Grabber Sink

provide everything to make a Media Sample if needed – they just do not provide the

Media Sample itself. The conversion and wrapping process used by the

CreateMediaSampleFromIntPtr() call have been documented in the Creating a Media

Buffer section of The WMF Components chapter and will not be discussed here.

Once you have a Media Sample, it can be given to the Sink Writer with a standard

WriteSample() call and the Sink Writer will know what to do with it. Note that the

newly created Media Sample is immediately released after it is given to the Sink Writer.

If the Sink Writer wishes to keep it around it will make a copy or set a new reference

and release that.

// write the sample out

hr = sinkWriter.WriteSample(sinkWriterMediaStreamId, outputSample);

Errors have to be treated somewhat differently. If we throw an exception in the

OnProcessSample function it will not get transmitted back to the application via the

Media Session. Apparently the Sample Grabber Sink traps and ignores such exceptions.

if (outputSample == null)

{

 string errMsg = " Error CreateMediaSampleFromBuffer outputSample == null";

 SampleGrabberAsyncCallBackError(this, errMsg, null);

 return HResult.E_FAIL;

}

As you can see in the above code, any errors explicitly call the

SampleGrabberAsyncCallBackError event with an informational message and other

details. The error handler in the application main form will receive this and deal with it.

Remember, the message will not arrive on the forms main thread so you will have to get

back on that thread before interacting with any forms or controls.

Practical WMF Architectures

210

Another thing to note in the above example of a Hybrid Architecture is that the closing

of the Media Session will also trigger the proper shutdown and Finalize_ on the Sink

Writer. This is done from within the context of the standard CloseAllMediaDevices()

call. There is no need to trap an end of stream message in the Callback Object because

as far as that object is concerned, the stream of media data never ends.

As mentioned previously, see the discussion in the Capture with a Hybrid Architecture

section of the Capturing Camera Data chapter regarding the

TantaCaptureToScreenAndFile Sample Project for information on how to use a

Transform to feed a Sink Writer.

One last thing that should be mentioned is that you never see a Hybrid Architecture

which uses a Source Reader which feeds into a Pipeline. Theoretically this is possible but

there is no “Sample Grabber Media Source” component supplied by Microsoft which

you could use to stuff the Media Samples from the Source Reader into the Pipeline. You

could write your own of course – it would be an interesting challenge – but until you (or

someone else) does that, the Sample Grabber Sink is all there is.

 211

Windows Media Foundation:
Getting Started in C#

Chapter 8

RENDERING AUDIO AND VIDEO
One of the most common Windows Media Foundation tasks is to display video on a

screen. Similarly, the playing of audio via the computer speakers or headphones is also

often required. Since these are such common requirements, the implementers of

Windows Media Foundation have built custom components to satisfy them.

The Enhanced Video Renderer (EVR) is a component which

simplifies the process of rendering a video stream (or

streams) on the display. In WMF, the EVR is implemented

as a Media Sink – an endpoint of a branch in a Topology.

The Streaming Audio Renderer (SAR) is designed to render

audio. Like the EVR, the SAR is a Media Sink however it is

single stream only.

It should be noted that neither the EVR nor the SAR are absolutely required in order to

render video and audio data in Windows Media Foundation. If you wish, it is quite

possible to write your own video or audio Media Sink and have that object interact

Rendering Audio and Video

212

directly with the appropriate Windows sub-systems. The reason this is not more

commonly done is that both the EVR and SAR are quite sophisticated components and

most of the functionality you might require is already contained within them. The

writing of custom Media Sinks is not covered in this book, nor do any of the Tanta

Sample Projects provide an example. The MF.Net example code does, however, provide

an example of just such a homebrew video renderer in its EVRPresenter sample.

As mentioned above, the EVR and SAR are Media Sinks. This means you need to choose

the Pipeline Architecture in order to use them. In other words, the requirement to use

an EVR or SAR explicitly defines the choice of architecture so you can forget any notions

you may have about using a Source Reader – it will be of no use to you here. Review the

Implementing the Pipeline Architecture section in the Practical WMF Architectures

chapter if your memory is hazy.

On the plus side note that both the EVR and SAR are Renderers, thus any Topology that

implements them is a “playback” Pipeline and so Transforms can be automatically

added to resolve Media Type differences when the Topology is resolved.

AN OVERVIEW OF THE SAR

To begin, we will discuss the Streaming Audio Renderer. Since it only has one stream,

and the defaults are good enough for most uses, we might as well get it out of the way

before we pursue the much more complex topic of the EVR.

Earlier versions of Windows Media Foundation forced you to choose an Audio Endpoint

Device when you configured the SAR. This meant that you could choose to play through

the speakers, headphones or some other audio device. In the newer Windows

Operating systems (Windows 7, 8 and 10) the concept of a defined Audio Endpoint

Device has largely been abstracted away and the target audio device is under the

control of the operating system. This is what makes it possible to plug in a set of USB

headphones while you are playing music and have the sound be automatically re-routed

to them.

The Audio Endpoint Device was found via an enumeration mechanism practically

identical to the one used to identify the Video Capture Devices on the system (except it

produces sink, not source devices). You can still do this if you wish – but if you do not

specify any Audio Endpoint Device, your Media Samples will be routed by the Streaming

Audio Renderer in the standard Windows way. This means the sound behaves the way

the user expects: via headphones if they are plugged in and to the speakers if they are

not. If you dig about on the Internet you will still come across example code that

 Rendering Audio and Video

 213

enumerates the Audio Endpoint Devices prior to setting up the SAR. Just be aware that

most of the time, unless you have specific reasons to the contrary, this is probably not

what you will want to do.

Let’s look at the creation process for the Streaming Audio Renderer, you can find the

code below in use in the TantaFilePlaybackSimple Sample Project.

/// +=

/// <summary>

/// Create a topology node for SAR Audio Renderer sink. The caller must

/// release the returned node.

/// </summary>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

public static IMFTopologyNode CreateSARRendererOutputNodeForStream()

{

 HResult hr;

 IMFTopologyNode outputNode = null;

 IMFActivate pRendererActivate = null;

 try

 {

 // Create a downstream node.

 hr = MFExtern.MFCreateTopologyNode(MFTopologyType.OutputNode, out outputNode);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MFCreateTopologyNode failed. Err=" + hr.ToString());

 }

 if (outputNode == null)

 {

 throw new Exception("failed. outputNode == null");

 }

 // There are two ways to initialize an output node

 // 1) From a pointer to the stream sink.

 // 2) From a pointer to an activation object for the media sink.

 // since we do not have a stream sink at this point we are going to go the

 // activation object route. This is what we are doing below.

 // Create an activation object for the streamin audio renderer (SAR) media sink.

 hr = MFExtern.MFCreateAudioRendererActivate(out pRendererActivate);

 if (hr != HResult.S_OK)

 {

 throw new Exception("MFCreateAudioRendererActivate failed. Err=" + hr.ToString());

 }

 if (pRendererActivate == null)

 {

 throw new Exception("pRendererActivate == null");

 }

 // Set the IActivate object on the output node. Note that not all node types use

 // this object. On transform nodes this is IMFTransform or IMFActivate interface

 // and on output nodes it is a IMFStreamSink or IMFActivate interface. Not used

 // on source or tee nodes.

 hr = outputNode.SetObject(pRendererActivate);

 // Return the IMFTopologyNode pointer to the caller.

 return outputNode;

 }

 catch

 {

 // If we failed, release the pNode

 if (outputNode != null)

 {

 Marshal.ReleaseComObject(outputNode);

 }

 throw;

 }

 finally

 {

 // Clean up.

 if (pRendererActivate != null)

 {

 Marshal.ReleaseComObject(pRendererActivate);

Rendering Audio and Video

214

 }

 }

}

Source: TantaCommon::TantaWMFUtils::CreateSARRendererOutputNodeForStream

The above code block creates the Streaming Audio Renderer as part of the creation

process for an output Topology Node. There are two ways of creating a SAR, the first (as

shown below) is to supply the Topology Node with an Activator which then creates the

SAR when the Topology is resolved.

// Create an activation object for the streamin audio renderer (SAR) media sink.

hr = MFExtern.MFCreateAudioRendererActivate(out pRendererActivate);

The second method is to use a call to the static MFCreateAudioRenderer function and

create it directly. Either way, the Activator or the SAR object is given to the Topology

Node via the SetObject() call. If you want your application to ever be able to play

Protected Media Content (PMP) you have to go the Activator route – otherwise the

method you use does not matter. PMP is not discussed in this book.

// Set the IActivate object on the output node.

hr = outputNode.SetObject(pRendererActivate);

Once you have created the SAR Topology Node you can connect it up to other nodes in

the audio branch of the Topology and, when the Pipeline begins running, the sound will

play out the appropriate device. The Media Session will control the data rate of the

sound so that, if there are video branches in the Pipeline, the sound and video play in a

synchronized manner. There are also some specialized volume control facilities available

on the Media Session and, of course, the user can always change the volume in the

usual way themselves.

AUDIO VOLUME AND MUTING

Changing the audio volume and muting can be easily done via the

IMFSimpleAudioVolume interface object we obtain from the Media Session. This

interface provides functions which will both get and set the current volume and apply

muting.

There are multiple volume controls on a Windows system. The PC itself has a Master

Volume control and this level is set via software. Ultimately, though, there are speakers

which render the sound and these too often have independent amplification and

volume controls.

Windows Media Foundation takes a pragmatic approach to volume management. It

treats any volume it might output as a level between 0 and 1. Level 0 means no sound

and level 1 means full Master Volume – in other words, the full level of whatever the PC

is currently configured to output. The default is level 1. Thus in MF.Net you can only

 Rendering Audio and Video

 215

adjust the effective volume from the full Master Volume to down to zero. It is not

possible, from within MF.Net, to make the volume louder than the Windows System is

currently configured to output.

The Windows Media Foundation volume is expressed as an attenuation level between 0

and 1. So, for example, an attenuation level of 0.5 is half of the PC’s full Master Volume.

The code below, which applies an incremental attenuation level to the existing volume,

shows how the volume can be adjusted using simple calls to GetMasterVolume() and

SetMasterVolume() on the IMFSimpleAudioVolume service.

HResult hr;

IMFSimpleAudioVolume simpleAudioService = null;

object rcServiceObj = null;

// sanity check

if (mediaSession == null) return false;

// We get the audio volume service from the Media Session.

hr = MFExtern.MFGetService(

 mediaSession,

 MFServices.MR_POLICY_VOLUME_SERVICE,

 typeof(IMFSimpleAudioVolume).GUID,

 out rcServiceObj

);

if (hr != HResult.S_OK)

{

 throw new Exception("call to MFExtern.MFGetService failed. Err=" + hr.ToString());

}

if (rcServiceObj == null)

{

 throw new Exception("call to MFExtern.MFGetService failed. rcServiceObj == null");

}

// set the rate control service now for later use

simpleAudioService = (rcServiceObj as IMFSimpleAudioVolume);

// now get the current attenuation level on the audio service

float attenuationLevel = 1.0f;

hr = simpleAudioService.GetMasterVolume(out attenuationLevel);

if (hr != HResult.S_OK)

{

 throw new Exception("call to simpleAudioService.GetMasterVolume failed.");

}

// now perform the increment

attenuationLevel += attenuationIncrement;

// anything below 0 or above 1 will throw an error. Volume is expressed

// as an attenuation level, where 0.0 indicates silence and 1.0 indicates

// full volume (no attenuation). The actual full volume level is controlled

// by the PC - perhaps even a knob on the speakers.

if (attenuationLevel < 0f) attenuationLevel = 0f;

if (attenuationLevel > 1.0f) attenuationLevel = 1.0f;

// now set the attenuation level on the audio service

hr = simpleAudioService.SetMasterVolume(attenuationLevel);

if (hr != HResult.S_OK)

{

 throw new Exception("call to simpleAudioService.SetMasterVolume failed.");

}

Source: TantaCommon::TantaWMFUtils::IncrementAudioVolumeOnSession

Muting and un-muting the sound is accomplished by similar calls to GetMute() and

SetMute() on the IMFSimpleAudioVolume service. The sample code below, which

toggles the mute state, illustrates this procedure.

HResult hr;

Rendering Audio and Video

216

IMFSimpleAudioVolume simpleAudioService = null;

object rcServiceObj = null;

// sanity check

if (mediaSession == null) return false;

try

{

 // We get the audio volume service from the Media Session.

 hr = MFExtern.MFGetService(

 mediaSession,

 MFServices.MR_POLICY_VOLUME_SERVICE,

 typeof(IMFSimpleAudioVolume).GUID,

 out rcServiceObj

);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MFExtern.MFGetService failed. Err=" + hr.ToString());

 }

 if (rcServiceObj == null)

 {

 throw new Exception("call to MFExtern.MFGetService failed. rcServiceObj == null");

 }

 // set the rate control service now for later use

 simpleAudioService = (rcServiceObj as IMFSimpleAudioVolume);

 // now get the mute state on the audio service

 bool muteState = false;

 hr = simpleAudioService.GetMute(out muteState);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to audioVolumeService.GetMute failed. Err=" + hr.ToString());

 }

 // toggle the state

 if (muteState == true) muteState = false;

 else muteState = true;

 // now set the mute state on the audio service

 hr = simpleAudioService.SetMute(muteState);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to audioVolumeService.SetMute failed. Err=" + hr.ToString());

 }

 return true;

}

finally

{

 // release the audio service interface

 if (simpleAudioService != null)

 {

 Marshal.ReleaseComObject(simpleAudioService);

 simpleAudioService = null;

 }

}

Source: TantaCommon::TantaWMFUtils::ToggleAudioMuteStateOnSession

It seems the MF.Net system, by mechanisms unknown, remembers the mute state and

the volume attenuation level. This is true even if the application is closed down and

restarted. Thus it is important to either turn off the mute state and reset the

attenuation level to 1 before you shut down or set these on startup from some saved

level.

IMPORTANT NOTE: Remember to turn off the mute state

and reset the attenuation level to 1 before you shut down

or to set these on startup from some saved level.

 Rendering Audio and Video

 217

Windows Media Foundation remembers the last levels

set and the next application starting will inherit them.

AN OVERVIEW OF THE EVR

The Enhanced Video Renderer is very a sophisticated tool. Remember how, in the

discussion of The Pipeline in The WMF Components chapter, it was mentioned that the

COM objects forming the Topology do not really know anything about each other? This

is especially true for the EVR. As long as the EVR object is given the correct information

in the correct way it does not care if a WMF Media Session is calling it or if something

else entirely is feeding it. The EVR can be called from completely different architectures

and, in fact, the same EVR component you get in Windows Media Foundation is also

used to display video in DirectShow graphs.

OLDER VERSIONS OF THE EVR

Actually, the EVR was originally developed for DirectShow and has proceeded through

numerous iterations and improvements. When digging around on the Internet you will

sometimes come across acronyms like VMR-7 and VMR-9. The acronym VMR stands for

Video Media Renderer. These are the older video renderers which were the default on

Windows XP. They are still available in later versions of Windows and many older

DirectShow based software products will use these renderers. It is conceivable that,

instead of using the newer WMF EVR, you could look around in the registry and

somehow use VRM-7 or VMR-9 for your display needs – however, there is nothing in

MF.Net that supports this. VRM-7 or VMR-9 or any other earlier iteration of the

Enhanced Video Renderer will not be discussed further here.

THE EVR AND DIRECT3D

Ultimately, the Enhanced Video Renderer has to display a moving image on the screen.

Of course, there is much more to it than that – but before we proceed to the various

capabilities of the EVR, let’s discuss how the image is displayed.

If you dig right into it, technically, the EVR has no ability to actually light up a pixel on

the screen. This functionality is abstracted away in Windows. What the Enhanced Video

Renderer does is create a Direct3D device (effectively a buffer in memory) and then a

Windows sub-system called the Desktop Window Manager (DWM) handles the

presentation on the screen. In older windows operating system versions, (XP and

Rendering Audio and Video

218

earlier), this sub-system was known as the Desktop Compositing Engine or DCE and it

was much less capable than the DWM.

Compositing, in case you are not familiar with the term, is the act of combining various

visual images into a single image. In the case of the Desktop Window Manager,

everything that wants to draw anything on the screen simply writes to its own video

buffer and the DWM handles the build of the final image on the desktop. It is this

technology which makes things like the Areo interface possible and, rather more

importantly, provides the Enhanced Video Renderer with some advanced capabilities.

The EVR can even share the Direct3D device on which it draws with other software

running external to the EVR and because the device is so abstract an entity, the DWM

can automatically invoke hardware acceleration, de-interlacing and various other useful

performance enhancing features.

MULTIPLE STREAMS IN THE EVR

The Enhanced Video Renderer is a Media Sink (an IMFMediaSink) but it does much

more than display a single stream of video – it can also act as a mixer (or compositor if

you wish) for up to 16 different streams. As you might imagine, there are all sorts of

rules regarding what can and cannot be done with the inbound streams. Not the least of

which is synchronization between the streams, color correction and dealing with the

various formats and interlacing modes they might use. Multiple streams, window-in-

window and various other cool visual effects are a pretty advanced topic and this book

will not discuss them. For now, just realize that the EVR is much more than a simple

“take an image and paint it on the screen” type object.

A SUMMARY OF THE CAPABILITIES OF EVR

We have all seen a video play on the screen in any number of products and have a good

idea of the functionality we expect such an application to provide. Fortunately the

Enhanced Video Renderer provides pretty much all of these capabilities so, if we ever

need to implement those sort of features, a lot of the hard work has already been done

for us. Listed below are some of the operations supported in the EVR.

The Enhanced Video Renderer can…

 Display a video on the surface of a form or control.

 Display up to 16 streams simultaneously and handle the overlaying and

transparencies.

 Control the aspect ratio of the video on display.

 Rendering Audio and Video

 219

 Provide software magnification.

 Handle display window size change events from external sources and

dynamically adjust.

 Handle video format change events and dynamically adjust.

 Start, pause and stop the video presentation at arbitrary points.

 Seek forwards and backwards in the video stream and restart from a

point in time.

 Fast forward and reverse and also implement slow motion speeds.

 Take a bitmap snapshot of the image currently on display at any time.

There is a section further on in this chapter devoted to each topic and that section will

explain the concept and associated requirements in detail. In addition, the Tanta library

code contains a control named ctlTantaEVRFilePlayer which, along with the

TantaFilePlayerAdvanced sample solution, provides a reasonably straight forward

reference implementation of each technique.

THE TANTAFILEPLAYBACK SAMPLES

There are two Tanta Sample Projects which use the EVR renderer and both of these

contain controls which, to a greater or lesser extent, provide a plug-in module

applications can use to display video data. These applications are…

TantaFilePlaybackAdvanced – this application uses a control from the TantaCommon

library named ctlTantaEVRFilePlayer. This control is designed to provide a simple

drop in mechanism which applications can use to display file based video data. The

ctlTantaEVRFilePlayer control contains all of the functionality necessary to

manipulate the stream of data (pause, stop, restart, fast forward & etc.). In this sample

code, the Media Session and Pipeline are located inside the ctlTantaEVRFilePlayer

control itself and the application does little more than feed it with a filename to play.

Since the entire Pipeline is contained within the ctlTantaEVRFilePlayer control, it

also adds a Streaming Audio Renderer to the Topology so that audio can be played.

TantaFilePlaybackSimple – this application uses the more conventional Media Session

and Pipeline structure as discussed in the Implementing the Pipeline Architecture

section of the Practical WMF Architectures chapter. The control used in this application

is named ctlTantaEVRStreamDisplay and it is designed to provide a limited

functionality control which applications can use to display a stream of video data. Unlike

the ctlTantaEVRFilePlayer control, the ctlTantaEVRStreamDisplay control has no

functionality to stop or pause the media data. The control is pretty much just limited to

Rendering Audio and Video

220

providing a screen on which to display video data and handling the screen size changes

if the user adjusts the form size. There is no SAR component implemented within the

ctlTantaEVRStreamDisplay control – the application must provide that itself if it

needs it.

THE CTLTANTAEVRSTREAMDISPLAY CONTROL

To start off our discussion of the Enhanced Video Renderer, let’s consider the

TantaFilePlaybackSimple application

and its use of the

ctlTantaEVRStreamDisplay control.

Knowing what you now know about

the Pipeline Architecture, it can be

said that the TantaFilePlaybackSimple

application is really just another

standard implementation of it.

Really, it is quite straight forward. In

fact, the entire

TantaFilePlaybackSimple application

is just a blatant cut-and-paste rework

of the TantaVideoFileCopyViaPipelineMP4Sink application you are already familiar with.

The only major difference is that instead of using the MP4 File sink with two Stream

Sinks we use an EVR Sink and a SAR Sink with one Stream Sink each. We have also

dropped the ctlTantaEVRStreamDisplay control onto the main form display.

Let’s join the TantaFilePlaybackSimple application in the

PrepareSessionAndTopology function of the frmMain class as the output Topology

Nodes for the Media Sinks are created.

... more code

// Create the Video sink node.

outputSinkNodeVideo = TantaWMFUtils.CreateEVRRendererOutputNodeForStream(

 this.ctlTantaEVRStreamDisplay1.DisplayPanelHandle);

if (outputSinkNodeVideo == null)

{

 throw new Exception("MFCreateTopologyNode(v) failed. outputSinkNodeVideo == null");

}

// Create the Audio sink node.

outputSinkNodeAudio = TantaWMFUtils.CreateSARRendererOutputNodeForStream();

if (outputSinkNodeAudio == null)

{

 throw new Exception("MFCreateTopologyNode(a) failed. outputSinkNodeAudio == null");

}

... more code

Source: TantaFilePlaybackSimple::frmMain::PrepareSessionAndTopology

Figure 8.1: The TantaFilePlaybackSimple Application

 Rendering Audio and Video

 221

Both of the above calls create the required output Topology Node using a static function

in the TantaWMFUtils class of the TantaCommon library. The operation of the

CreateSARRendererOutputNodeForStream function was covered earlier in the An

Overview of the SAR section. The CreateEVRRendererOutputNodeForStream() routine

for the EVR is pretty much identical to the SAR version except for some obvious changes

– but we will document it here for the sake of completeness.

/// +=

/// <summary>

/// Create a topology node for EVR Video Renderer sink. The caller must

/// release the returned node.

/// </summary>

/// <param name="videoWindowHandle">the handle to the window on which

/// video streams will display</param>

/// <returns>the ouput stream node</returns>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

public static IMFTopologyNode CreateEVRRendererOutputNodeForStream(IntPtr videoWindowHandle)

{

 HResult hr;

 IMFTopologyNode outputNode = null;

 IMFActivate pRendererActivate = null;

 try

 {

 // Create a downstream node.

 hr = MFExtern.MFCreateTopologyNode(MFTopologyType.OutputNode, out outputNode);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MFCreateTopologyNode failed. Err=" + hr.ToString());

 }

 if (outputNode == null)

 {

 throw new Exception("call to MFCreateTopologyNode failed. outputNode == null");

 }

 // Create an activation object for the enhanced video renderer (EVR) media sink.

 hr = MFExtern.MFCreateVideoRendererActivate(videoWindowHandle, out pRendererActivate);

 if (hr != HResult.S_OK)

 {

 throw new Exception("MFCreateVideoRendererActivate failed. Err=" + hr.ToString());

 }

 if (pRendererActivate == null)

 {

 throw new Exception("failed. pRendererActivate == null");

 }

 // Set the IActivate object on the output node. Note that not all node types use

 // this object. On transform nodes this is IMFTransform or IMFActivate interface

 // and on output nodes it is a IMFStreamSink or IMFActivate interface. Not used

 // on source or tee nodes.

 hr = outputNode.SetObject(pRendererActivate);

 // Return the IMFTopologyNode pointer to the caller.

 return outputNode;

 }

 catch

 {

 // If we failed, release the outputNode

 if (outputNode != null)

 {

 Marshal.ReleaseComObject(outputNode);

 }

 throw;

 }

 finally

 {

 // Clean up.

 if (pRendererActivate != null)

 {

 Marshal.ReleaseComObject(pRendererActivate);

 }

 }

Rendering Audio and Video

222

}

Source: TantaCommon::TantaWMFUtils::CreateEVRRendererOutputNodeForStream

It should be noted that the EVR needs a window handle so that it knows where to draw

its output. The SAR needs no such information - interacting as it does with the generic

Windows audio sub-system. A standard Windows Panel control is implemented in the

ctlTantaEVRStreamDisplay control for the EVR to draw on and a window handle is

readily obtained from it.

public IntPtr DisplayPanelHandle

{

 get

 {

 return this.panelDisplayPanel.Handle;

 }

}

Source: TantaCommon::ctlTantaEVRStreamDisplay::DisplayPanelHandle

Once the Topology Nodes are created, we simply connect them up as usual: audio

source node to audio output node and video source node to video output node.

... more code

// hr = sourceVideoNode.ConnectOutput(0, outputSinkNodeVideo, 0);

if (hr != HResult.S_OK)

{

 throw new Exception("call to ConnectOutput(v) failed. Err=" + hr.ToString());

}

hr = sourceAudioNode.ConnectOutput(0, outputSinkNodeAudio, 0);

if (hr != HResult.S_OK)

{

 throw new Exception("call to ConnectOutput(a) failed. Err=" + hr.ToString());

}

... more code

Source: TantaFilePlaybackSimple::frmMain::PrepareSessionAndTopology

No surprises there – by now this is just pretty standard stuff for you. There is only one

other oddity – because we used an Activator to create the EVR (and SAR) our application

does not have knowledge of those objects. We will need the EVR object though, so we

dig it out of the Media Session when we get the TopologyNowReady event after the

Topology is resolved. The procedure is to ask the Media Session for the EVR object via a

GetService() call.

private void MediaSessionTopologyNowReady(IMFMediaEvent mediaEvent)

{

 HResult hr;

 object evrVideoService;

 LogMessage("MediaSessionTopologyNowReady");

 // we need to obtain a reference to the EVR Video Display Control.

 // We used an Activator to configure this in the Topology and so

 // there is no reference to it at this point. However the media session

 // knows about it and so we can get it from that.

 try

 {

 // we need to get the active IMFVideoDisplayControl. The EVR

 // presenter implements this interface

 hr = MFExtern.MFGetService(

 mediaSession,

 Rendering Audio and Video

 223

 MFServices.MR_VIDEO_RENDER_SERVICE,

 typeof(IMFVideoDisplayControl).GUID,

 out evrVideoService

);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MFGetService failed. Err=" + hr.ToString());

 }

 if (evrVideoService == null)

 {

 throw new Exception("evrVideoService == null");

 }

 // set the video display now for later use

 evrVideoDisplay = evrVideoService as IMFVideoDisplayControl;

 // also give this to the display control

 ctlTantaEVRStreamDisplay1.EVRVideoDisplay = evrVideoDisplay;

 }

 catch (Exception ex)

 {

 evrVideoDisplay = null;

 ctlTantaEVRStreamDisplay1.EVRVideoDisplay = evrVideoDisplay;

 LogMessage("Error: " + ex.Message);

 }

 try

 {

 StartFilePlay();

 }

 catch (Exception ex)

 {

 LogMessage("MediaSessionTopologyNowReady errored ex="+ex.Message);

 OISMessageBox(ex.Message);

 }

}

Source: TantaFilePlaybackSimple::frmMain::MediaSessionTopologyNowReady

Note how the EVR object is given to the ctlTantaEVRStreamDisplay control. Be aware

that this object, like all of the objects you get from WMF, will need to be released when

playback is over. Once we have the EVR object, the above code calls the

StartFilePlay() function and that is just a wrapper for the Start() call on the Media

Session that we have discussed many times before.

// this is what starts the data moving through the pipeline

HResult hr = mediaSession.Start(Guid.Empty, new PropVariant());

The Start() call on the Media Session starts the data moving through the Pipeline and

both the video and audio streams will reach their respective renderers in a synchronized

manner. In other words, the Media Session takes care of making sure the sound

matches the picture on display and the whole process is throttled so that they both play

at normal speeds. As has been mentioned previously – the Pipeline is a powerful,

sophisticated technology and the functionality you get from it is well worth the small

trouble of setting it up in the first place.

The only other functionality of interest is the way in which the

ctlTantaEVRStreamDisplay control handles screen size changes. If the user adjusts

the size of the screen, they will expect the video image to adjust appropriately. It is

worth a look to see this process in action, however, we will delay the discussion of this

procedure until the Handling Size Change Events section further on in this chapter. The

Rendering Audio and Video

224

technique used involves such concepts as Source Windows and Destination Rectangles

and you will have a better understanding of that background material by that time. Still,

if you are interested, have a look at the ctlTantaEVRStreamDisplay_SizeChanged

function in the ctlTantaEVRStreamDisplay control – the comments there are pretty

explanatory.

It should be noted that several other Tanta Sample Projects

(TantaCaptureToScreenAndFile, TantaTransformDirect, TantaTransformInDLLClient) also

use the ctlTantaEVRStreamDisplay control as part of their operation. You will meet

this control every time a Tanta Sample Application needs a simple way to display video

data.

THE CTLTANTAEVRFILEPLAYER CONTROL

The philosophy behind the ctlTantaEVRFilePlayer control is somewhat different than

that of the ctlTantaEVRStreamDisplay control. The ctlTantaEVRFilePlayer control is

designed to present the user with a tool that can be dropped onto a form and which

handles all of the mechanisms necessary for a file playback operation. In other words, it

is ctlTantaEVRFilePlayer control itself which contains all of the buttons and sliders

which start, stop and control the flow of the video data. This eliminates the need for the

application to implement that functionality itself. The control is a self-contained display

engine – give it a file and it will let the user play it.

The TantaFilePlaybackAdvanced Sample Application demonstrates the use of the

ctlTantaEVRFilePlayer control.

Remember how it was mentioned

previously that the

ctlTantaEVRFilePlayer control

contains all of the GUI functionality

which can be used to start, stop and

control the flow of the video data?

Well in order to do that, the control

needs to interact with the Media

Session and Pipeline. In other words,

the ctlTantaEVRFilePlayer control

also implements the Media Session

and Topology functionality which

creates the Pipeline. It should be noted that, in this case, the function which sets up the

Pipeline is named OpenVideoFileAndPrepareSessionAndPlay. If you look at the code

Figure 8.2: The TantaFilePlaybackAdvanced Application

 Rendering Audio and Video

 225

for this function, you will see that it is mostly identical to the

PrepareMediaSessionAndTopology function used in the TantaFilePlaybackSimple

Sample Application. The frmMain of the TantaFilePlaybackAdvanced application has

nothing to do with the Pipeline other than supply the ctlTantaEVRFilePlayer control

with the name of the file the user has chosen to play.

The OpenVideoFileAndPrepareSessionAndPlay function is launched out of the

buttonPlay_Click handler when the user clicks on the controls Play button. The vast

majority of this code is the standard Tanta Pipeline setup (it just happens to be in a

control rather than a form) and it functions in exactly the same way: the Pipeline is

created and the SAR and EVR Media Sinks are attached to an MP4 Media Source. The

only real difference is that this code also contains the ability to add a Transform to the

video branch of the Pipeline. You have not met Transforms in any detail yet and, in this

application, there is no Transform to add so the resulting Pipeline will look identical to

the one in the previous example.

In the interests of space (it is really quiet lengthy) we will not reproduce the code for

this Pipeline setup here. You have probably seen more than enough Pipeline source

code by now anyways and are probably able to read the sample source as if it was a

book. Here is some pseudo code which illustrates the process.

public void OpenVideoFileAndPrepareSessionAndPlay()

{

 Create Media Session

 Give the Media Session a Callback Object so it can report events and errors

 Create a Topology

 Create the Media Source from a file

 Get a Presentation Descriptor from the Media Source

 Find the StreamDescriptor of the first enabled video stream from the Presentation

 Find the StreamDescriptor of the first enabled audio stream from the Presentation

 Create the source video and audio Topology Nodes

 Create the output Topology Node for the EVR

 Create the output Topology Node for the SAR

 Add all the nodes to the Topology

 Do we have a Transform?

 If yes

 Create a Transform Topology Node and add to the topology

 If no

 Proceed as normal.

 Connect the source audio Topology Node to the output audio Topology Node

 Do we have a Transform?

 If yes

 Connect the source video Topology Node to the Transform Topology Node

 Connect the Transform Topoloby Node to the output video Topology Node

 If no

 Connect the source video Topology Node to the output video Topology Node

Rendering Audio and Video

226

 Resolve the Topology

 Get the playback duration from the Media Session

}

Source: TantaCommon::ctlTantaEVRFilePlayer::OpenVideoFileAndPrepareSessionAndPlay (pseudo code)

Ultimately, after the OpenVideoFileAndPrepareSessionAndPlay function completes,

the media data is moving through the Pipeline to the appropriate sink (EVR and SAR).

The user will see the video display on the screen and hear the synchronized audio.

Besides the Transform Topology Node code (you will meet that again in the Working

With Transforms chapter), the only real difference is that the duration of the file

playback is obtained from the Media Session.

// get the duration from the presentation descriptor now. This is nothing to do

// with the creation of the topology. We will eventually need this so

// we can tell the user how long the video is. We have to get it from the

// presentation descriptor and so might as well just get it here

VideoDuration = TantaWMFUtils.GetDurationFromPresentationDescriptor(

 sourcePresentationDescriptor); ());

As the comments in the above code block state – the duration is not really a part of the

build of the Pipeline. We just need a Presentation Descriptor to obtain it and, since we

happen to have one available at that point, we take the opportunity to extract and store

it in a class variable for later use.

It should also be noted that we have to obtain the Enhanced Video Renderer object

after the Topology has been resolved. As usual, we dig it out of the Media Session when

we get the TopologyNowReady event after the Topology is resolved. See the

MediaSessionTopologyNowReady function for more information.

Since the MediaSessionTopologyNowReady function records the Enhanced Video

Renderer object in an instance variable in the ctlTantaEVRFilePlayer class, the EVR

object is available to manipulate the image stream while the video is playing. Actions

such as resizing the screen, stopping, pausing, fast forwarding and taking snapshots

from the video stream are all possible because of this.

THE VIDEO WINDOW DRAWING SURFACE

Let’s take a small digression from our discussion of the EVR in order to provide some

background details on the drawing process. The region on which the Enhanced Video

Renderer places its output is called the Drawing Surface. Most of the EVR examples you

might see on the Internet simply use the entire form area inside the top panel and

header bars as the display area. This works but has complications. Not the least of which

is that your application will have no room for anything else on the form and you will find

 Rendering Audio and Video

 227

that the form controls are rendered on top of the video being displayed. In other words,

unless you take care to work around it with clever positioning and resizing, you might

have a button sitting on top of your running video.

The video surface does not have to be the entire area of a form. The surface on which

the Enhanced Video Renderer draws is determined by a Window Handle you provide in

the EVR’s SetVideoWindow call. If you choose to create the EVR via an Activator (which

is what the ctlTantaEVRFilePlayer control in the Tanta sample source does) you can

also supply the window handle in the MFCreateVideoRendererActivate call.

You can use any surface for which you can find a window handle as the EVR’s drawing

surface. Since each Windows form and control comes equipped with a Control.Handle

property you have a wide range of choices. Some, obviously, are better than others. For

example, you would probably not want to draw on a button control unless you really

wanted your video to be clickable (and even then there are much better ways of doing

that).

In the Tanta ctlTantaEVRFilePlayer control sample, the actual handle used for a display

surface is of a standard Windows Panel control placed on the parent control. The Panel

control provides a nice, uncomplicated, borderless area on which to draw and also

allows the use the entire Panel control surface for the display area. The parent control

contains the Panel control and places any other necessary controls (such as buttons)

around it. If the parent control also builds and configures Media Session and Pipeline,

then all interactions with the Media Session can be handled within the parent control.

Using a Panel control as the display surface also makes the math nice and easy and you

will appreciate that when we come to implement support for window resizing and

software magnification.

The example below is clipped from the ctlTantaEVRFilePlayer control in the

TantaCommon Sample Project.

// Create the output node for the video renderer.

outputSinkNodeVideo = TantaWMFUtils.CreateEVRRendererOutputNodeForStream(

 this.panelDisplayPanel.Handle);

if (outputSinkNodeVideo == null)

{

 throw new Exception("call failed. outputSinkNodeVideo == null");

}

// Create the output node for the audio renderer.

outputSinkNodeAudio = TantaWMFUtils.CreateSARRendererOutputNodeForStream();

if (outputSinkNodeAudio == null)

{

 throw new Exception("call failed. outputSinkNodeAudio == null");

}

Source: TantaCommon::ctlTantaEVRFilePlayer::OpenVideoFileAndPrepareSessionAndPlay

Rendering Audio and Video

228

As you can see in the above code section, the window handle of the Panel control is

passed in on the MFCreateVideoRendererActivate call. All of the usual functions of

the Panel control continue operate correctly and so, for example, we can use it’s Anchor

property and the SizeChanged event to automatically detect window resizes of the

parent form.

THE VIDEO WINDOW APPEARANCE

There are a number of factors that will affect the appearance of the video on the

drawing surface, the parts of the drawing surface used, and the portion of the frames in

the video stream which are rendered onto the screen.

ABOUT ASPECT RATIOS

The relative proportions of the height and width of an image is called the Aspect Ratio.

This is true even for still images. The Aspect Ratio is usually expressed as a width and

height number separated by a colon (for example 4:3). It is important to realize that this

is a ratio, not an absolute size, and that an Aspect Ratio does not have a unit of

measurement value such as centimeters, inches or pixels.

An Aspect Ratio of 1.33:1 (4:3) is the most common one you will run across as this is the

standard TV video image Aspect Ratio. Another common Aspect Ratio is 1.85:1 (roughly

16:9) which is the usual widescreen TV Aspect Ratio.

Interestingly, some newer DVD’s contain the video data in

both 4:3 and 16:9 formats and will play one or the other

depending on the type of TV on which the image is being

rendered. PC monitor Aspect Ratios vary considerably with 8:5

being common.

So, what happens if the display surface on which the image is

being rendered is not in the same proportions as the video

frames? In other words, what happens if the Aspect Ratio of

the frames in the video stream is not the same as the Aspect

Ratio of the display device? This issue is extremely common

when using the Enhanced Video Renderer. After all it does

draw on a display surface (a form or control) which can be arbitrarily re-shaped

according to the whim of the user.

In the event of differing Aspect Ratios, there are three options of which only the first

two are generally acceptable. If you have differing Aspect Ratios you can…

Figure 8.3: Example

Aspect Ratios

 Rendering Audio and Video

 229

1. Display the entire video to the maximum in whichever direction

is the constraining dimension and leave empty space (usually

black) in the displayable areas of the display surface.

2. Fill the drawing surface to the maximum and remove the areas

which exceed the bounds of the video display area.

3. Stretch the video frames to fit. This usually involves duplicating

rows or columns, depending on the dimension being stretched to

insert filler.

Option 1 is known as “letterboxing” or “pillarboxing” depending on whether the image

leaves displayable areas at the top and bottom or left and right respectively. Letter

boxing is commonly seen when displaying a 16:9 widescreen video on an older TV that is

designed for a 4:3 aspect ratio.

This method of coping with differing Aspect Ratios has the advantage that it displays the

entire contents of the frames in the video stream but that there is a lot of empty unused

space on two of the edges.

Option 2 is known as clipping. One dimension is maximized and the remainder is simply

not displayed. Typically it is assumed that the most interesting part of the frame is in the

center and so equal parts of two edges, usually the left and right edges, are removed.

This has the advantage that the video on display is much larger however, any events on

the periphery are not shown to the user. You may sometimes see this method of

adjusting an aspect ratio referred to as “pan-and-scan”.

Option 3 is known as stretching and it is generally considered to be the least acceptable

of the three options. However it is sometimes seen on video rendered in PC windows

since users can simply resize the window and its proportions to stop any stretching they

find unacceptable. It does have the advantage that the entire contents of the frames in

the video stream are always visible – if somewhat distorted.

There is another usage of the term Aspect Ratio which has not been discussed here.

Some devices do not have “square” pixels. They have rectangular pixels in which one

dimension, usually the height, is longer than the width. This is known as the Pixel Aspect

Ratio. The discussion above about the video window Aspect Ratio is known as the

Picture Aspect Ratio. As you might imagine, having different Pixel Aspect Ratios on

different devices can considerable problems in the rendering. This issue can be coped

with in code but the EVR has no intrinsic support for non-square Pixel Aspect Ratios and

so the topic will not be discussed further here.

Rendering Audio and Video

230

THE EVR AND ASPECT RATIOS

The Enhanced Video Renderer supports various Aspect Ratio treatments. There are a

number of these, of which only Letterboxing and Stretching are built-in modes. The

remainder of the built-in Aspect Ratio modes are either obscure, deprecated or

unsupported and so will not be discussed here. Clipping is also possible – but it is not a

mode per-se. You can easily set up clipping, and much more besides, but that is the

topic of the following section entitled The EVR Video Window Size and Position.

It appears, at least in some very general tests, that the default Aspect Ratio Mode in the

Enhanced Video Renderer is letterboxing. However, this is easy to change. The Aspect

Ratio is set in the EVR through a call to the SetAspectRatioMode() function and this

takes one parameter which is an enum of type MFVideoAspectRatioMode. In reference

to the above discussion of the default Aspect Ratio Mode, the letterboxing default is

actually MFVideoAspectRatioMode.PreservePicture and stretching mode is

MFVideoAspectRatioMode.None.

The effects of changing the EVR’s Aspect Ratio Mode are easy to test. Setting the mode

should be done after it is fully configured and the topology is built – possibly just before

the Media Session is started. Just compile up the TantaFilePlaybackAdvanced sample

and find the StartPlayback() function in the TantaCommon.ctlTantaEVRFilePlayer

control. Inserting either of the two lines below will demonstrate the various aspect ratio

modes as you resize the screen.

... more code

evrVideoDisplay.SetAspectRatioMode(MFVideoAspectRatioMode.None);

// evrVideoDisplay.SetAspectRatioMode(MFVideoAspectRatioMode.PreservePicture);

HResult hr = mediaSession.Start(Guid.Empty, new PropVariant());

... more code

Source: TantaCommon::ctlTantaEVRFilePlayer::StartFilePlay

THE EVR VIDEO WINDOW SIZE AND POSITION

The Enhanced Video Renderer displays its video on the surface of whichever window it

is configured with. There is an extensive discussion of this in The Video Window

Drawing Surface section.

However, having a display surface to draw on does not mean the entire content of the

video stream is necessarily always completely visible on that surface. One reason why

all, or part, of the drawing surface might not be used is that the Aspect Ratios of the

surface and the display area might be different. The previous section on The EVR and

 Rendering Audio and Video

 231

Aspect Ratios discusses this concept in some detail and so it will not be discussed

further here.

The part of the video stream which is rendered on the drawing surface is controlled by

two numerical windows internal to the Enhanced Video Renderer. These windows are

called the Source Window and the Destination Window. These two windows are

specified in a call to the EVR’s SetVideoPosition member. This call can be made at any

time after the EVR is created and either or both of the windows can be changed at any

time.

The Source Window determines which portion of the video is displayed. It is specified in

normalized coordinates. In other words, the Source Window is configured with four

values - each between 0 and 1. To display the entire video image we would set the

Source Window rectangle to {0, 0, 1, 1}. To display the bottom right quarter we

would set it to {0.75f, 0.75f, 1, 1}. The default Source Window value is {0, 0, 1,

1}.

The Destination Rectangle defines a rectangle within the clipping window (the video

surface) where the video appears. This value is specified in pixels, relative to the display

surface. In order to fill the entire display area, set the destination rectangle to {0, 0,

width, height} where the width and height values are the dimensions of the window

or control client area.

In this way all, or part, of the source video stream will be presented on the display

surface within the area specified by the Destination Window.

If the Source and Destination Windows are set up in such a manner that the entire

display surface is not useable due to incompatible Aspect Ratios, then the Enhanced

Video Renderer will automatically adjust the displayable area in a way which is

appropriate to the currently set Aspect Ratio Mode. This will either be stretching,

clipping or letterboxing. Please see the previous discussion of the EVR’s treatment of

Aspect Ratio issues for more details.

In the ctlTantaEVRFilePlayer control, the display surface is the entire area of a child

Panel control rather than the surface of the main control itself. This makes it possible to

place buttons and other controls on the parent control without having to adjust the

Destination Window size to cope with their presence. It is, of course, possible to do it

the other way – draw directly on the main control client area and then use the

Destination Window to ensure the region containing the buttons and other controls are

not overwritten. In other words, we can use the Destination Window to arbitrarily write

Rendering Audio and Video

232

on a specific sub-section of a display surface even though the entire area is theoretically

writeable.

SOFTWARE MAGNIFICATION

Creative use of the Source Window can provide software magnification. If we leave the

destination window the same and then use a Source Window of {0.25f, 0.25f, 0.75f,

0.75f} we will get a 2x magnification effect as the Enhanced Video renderer expands the

displayable part of the video frames to fit the area. Quite large magnifications are

possible as is illustrated in the Figures 8.4 and 8.5 below.

Software magnification does not provide the underlying video stream with additional

resolution – it can only make the details already present somewhat larger. Of course, if

the resolution of the video stream is already much greater than the content in the video

window, it will be possible to see extra detail not previously displayed.

HANDLING SIZE CHANGE EVENTS

Unless you specifically enforce a static screen size, it is rare on PCs for the user to avoid

resizing the display area. Thus, if you are drawing on a client window area, you will need

to change the Destination Window in response to that windows size change events. If

you are drawing on the surface of a control, your application can get the same events

simply by ensuring your control is appropriately anchored in all four directions.

Your code will receive size changed notices by setting up and handling the

SizeChanged() event. Once inside this event, the Enhanced Video Renderers

SetVideoPosition member can be called in order to adjust the display area. As

mentioned previously, the ctlTantaEVRFilePlayer control in the TantaCommon Sample

Project draws on the entire surface of a child Panel control. As the code below shows, it

is a relatively trivial procedure to adjust the EVR’s Destination window to match that of

the new size of the panel control. The Panel control (panelDisplayPanel in this example)

Figure 8.4: No Magnification

Figure 8.5: Large Magnification

 Rendering Audio and Video

 233

is anchored to the Top, Left, Right and Bottom of the ctlTantaEVRFilePlayer controls

client area.

HResult hr;

if (evrVideoDisplay == null) return;

try

{

 MFRect destinationRect = new MFRect();

 MFVideoNormalizedRect sourceRect = new MFVideoNormalizedRect();

 // populate a MFVideoNormalizedRect structure that specifies the source rectangle.

 // This parameter can be NULL. If this parameter is NULL, the source rectangle

 // does not change.

 sourceRect.left = 0;

 sourceRect.right = 1;

 sourceRect.top = 0;

 sourceRect.bottom = 1;

 // populate the destination rectangle. This parameter can be NULL. If this parameter

 // is NULL, the destination rectangle does not change.

 destinationRect.left = 0;

 destinationRect.top = 0;

 destinationRect.right = panelDisplayPanel.Width;

 destinationRect.bottom = panelDisplayPanel.Height;

 // now set the video display coordinates

 hr = evrVideoDisplay.SetVideoPosition(sourceRect, destinationRect);

 if (hr != HResult.S_OK)

 {

 throw new Exception("ctlTantaEVRFilePlayer_SizeChanged failed. Err=" + hr.ToString());

 }

}

catch (Exception ex)

{

 LogMessage("Size change failed exception happened. ex=" + ex.Message);

 NotifyPlayerErrored(ex.Message, ex);

}

Source: TantaCommon::ctlTantaEVRFilePlayer::ctlTantaEVRFilePlayer_SizeChanged

PLAYBACK CONTROL

After years of dealing with DVD players and online videos, any viewer of a video stream

will have a pretty good idea of what they think they should be able to do in the way of

control. This means stopping, restarting, pausing, fast forward, rewind and generally

skipping about in the video stream. If your application does not provide these controls

you will probably get complaints. Fortunately the Enhanced Video Renderer supports all

of these features – although you do have to use a variety of techniques to implement

them.

The following section provides a detailed discussion of each option and you can find a

working example to review in the ctlTantaEVRFilePlayer control in the

TantaFilePlayerAdvanced Sample Project.

STARTING, PAUSING AND STOPPING THE EVR

In general, the Media Session manages the stream of media data moving from the

sources to the sinks. This is true in Pipelines used for either the playback or the creation

Rendering Audio and Video

234

of media files. The Media Session is all about the control of Media Streams and it is the

IMFMediaSession interface on the Media Session that enables you to Start, Pause,

Restart and Stop the video playback. When you perform operations like this you are not

interacting with the EVR – you are simply preventing the media data from reaching it.

If you look carefully in the OpenVideoFileAndPrepareSessionAndPlay function of the

ctlTantaEVRFilePlayer control you will see that the Media Session object is stored as a

class variable as part of its creation process.

// Create the media session.

hr = MFExtern.MFCreateMediaSession(null, out mediaSession);

Since the mediaSession object is a class variable it is available to any function in the

ctlTantaEVRFilePlayer control. Once you have a Media Session object, controlling the

actual flow of information is actually quite straight forward.

Recall how the Pipeline was originally launched by issuing the Start() function call on

the Media Sessions IMFMediaSession interface. This function can also be used to re-

start the Pipeline after it has been stopped and the parameters to this function can be

used to determine the start position within the media stream. In order to start a media

stream at the beginning of a file, all that is necessary is to feed in dummy values to the

Start() command as shown below

HResult hr = mediaSession.Start(Guid.Empty, new PropVariant());

if (hr != HResult.S_OK)

{

 throw new Exception("Scall to mediaSession.Start failed. Err=" + hr.ToString());

}

Source: TantaFilePlaybackAdvanced::TantaCommon::ctlTantaEVRFilePlayer::StartPlayback

A Media Session is paused by issuing the Pause() call on its IMFMediaSession

interface. There are no parameters to this call. What is really happening in this call is

that the Presentation Clock is stopped. This clock controls the rate of display - if the

clock is not moving forward then the Media Session does not move data and the video

and audio appear to be paused.

Be aware that a second call to the Pause() function does not toggle the Pipeline back

on. That must be done with a second call to the Start() function – again with the

dummy parameters. In this case, since the session has been paused, the Start() just

restarts the current Presentation Clock and hence resumes the media playback at the

previous stop point.

The code below demonstrates an example of how pause functionality might be toggled

on and off.

if (PlayerState == TantaEVRPlayerStateEnum.Paused)

 {

 Rendering Audio and Video

 235

 // we are already paused - we restart

 hr = mediaSession.Start(Guid.Empty, new PropVariant());

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to mediaSession.Start failed. Err=" + hr.ToString());

 }

 }

 else

 {

 hr = mediaSession.Pause();

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to mediaSession.Pause() failed. Err=" + hr.ToString());

 }

 PlayerState = TantaEVRPlayerStateEnum.PausePending;

 }

Source: TantaCommon::ctlTantaEVRFilePlayer::buttonPause_Click

In the above code it is not obvious why the act of pausing the video session sets the

PlayerState variable to a value of PausePending and yet we test on a value of Paused.

We won’t discuss this in detail here since it is not a WMF concern and you can look it up

for yourself in the ctlTantaEVRFilePlayer source. What is actually happening is that a

call to the Pause() function triggers an event in the Media Sessions Callback Object

which, when processed, will set the state of the PlayerState variable to a value of

Paused. This can be seen in the ctlTantaEVRFilePlayer code in the

HandleMediaSessionAsyncCallBackEvent function.

A Media Session can be stopped by issuing the Stop() function call. As with the

Pause() function call, there are no parameters. A stopped Media Session will remove

the video from the display and replace the drawing area with the default background

color (which is usually black). A Media Session which has been stopped cannot be

restarted.

GETTING THE DURATION AND THE CURRENT PROGRESS

It is quite common to want to know the duration of a media file being played and also

where in the stream the current frame on display is positioned. Having this information

makes it possible to do interesting things like updating a Progress Bar which displays the

current state. It should be noted that it is possible to jump forward and backwards

through a file based stream – even if the media data has not already been rendered. As

we shall see in a later section, this makes it possible to set up a Scroll Bar control so that

a mouse drag on its handle can make the Media Session move immediately to that

relative point in the stream.

Although they are grouped together in this chapter, in reality, the duration and current

progress are really two separate issues since their values are derived from two different

components.

Rendering Audio and Video

236

The duration of a file based stream can be found by digging around in the Presentation

Descriptor of the Media Source. Recall that we previously obtained the duration as the

last action in the OpenVideoFileAndPrepareSessionAndPlay function after setting up

the Pipeline.

// get the duration from the presentation descriptor now. This is nothing to do

// with the creation of the topology. We will eventually need this so

// we can tell the user how long the video is. We have to get it from the

// presentation descriptor and so might as well just get it here

VideoDuration = TantaWMFUtils.GetDurationFromPresentationDescriptor(

 sourcePresentationDescriptor); ());

Source: TantaCommon::ctlTantaEVRFilePlayer::OpenVideoFileAndPrepareSessionAndPlay

The actual method of deriving the duration from the Presentation Descriptor is quite

straight forward. The code section below details the operation of the

GetDurationFromPresentationDescriptor function in the TantaWMFUtils library.

public static UInt64 GetDurationFromPresentationDescriptor(

 IMFPresentationDescriptor sourcePresentationDescriptor)

{

 Int64 presentationDuration = 0;

 if (sourcePresentationDescriptor == null)

 {

 throw new Exception("No presentation descriptor provided");

 }

 // Ask the presentation descriptor for the duration. This should never be negative even

 // though it is stored as an Int64

 sourcePresentationDescriptor.GetUINT64(

 MFAttributesClsid.MF_PD_DURATION,

 out presentationDuration);

 return (UInt64)presentationDuration;

}

Source: TantaFilePlayback::TantaCommon::TantaWMFUtils

As can be seen above, obtaining the duration is just a matter of requesting it from

Attribute collection of the Presentation Descriptor using the MF_PD_DURATION GUID key.

Interestingly, this is one of those cases when

dealing with Attributes that it is not

necessary to get an IMFAttributes

container from the object. The Presentation

Descriptor directly implements the

IMFAttribute interface – it is an

IMFAttributes object. Thus the duration

can just be directly requested.

Both the duration and current progress point

are times. This is why you will sometimes see

the current progress point referred to as the

Presentation Clock. Unlike a normal clock, the Presentation Clock can be stopped and

Figure 8.6: Current Position and Duration in the
TantaFilePlayerAdvanced Application

 Rendering Audio and Video

 237

re-started according to the current playing state of the Media Session. Even more unlike

a normal clock, the Presentation Clock can also be can be speeded up or reversed in

order to provide a fast forward or rewind capability.

Both duration and current Presentation Clock are stored in units of 100 nanoseconds

(sometimes called “ticks”). They are stored internally as a 64 bit integer (an Int64).

However this value will never be negative and the Tanta Sample Projects typically cast it

to a UInt64 whenever they store it.

Converting these clock values to seconds is as easy as dividing by 10000000. The

TantaWMFUtils code provides a handy conversion tool which will take a Presentation

Clock value and convert it to a string in the format HH:MM:SS. This output can be seen

near the bottom right and left hand corners of the ctlTantaEVRFilePlayer display in the

TantaFilePlayerAdvanced Sample

The current progress of the playing file (the value of the current Presentation Clock) is

obtained from the Media Session. As with many things WMF, getting access to it is a

two-step process, the static GetPresentationTimeFromSession function in the

TantaWMFUtils library below shows how it is done.

public static UInt64 GetPresentationTimeFromSession(IMFMediaSession mediaSession)

{

 HResult hr;

 IMFClock clockObject = null;

 Int64 presentationClock = 0;

 if (mediaSession == null)

 {

 throw new Exception("No mediaSession provided");

 }

 try

 {

 // get our presentation clock, this needs to be released.

 hr = mediaSession.GetClock(out clockObject);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MediaSession.GetClock failed”);

 }

 if (clockObject == null)

 {

 throw new Exception("call to MediaSession.GetClock failed. clockObject == null");

 }

 // we have the clock object, but we actually need an IMFPresentationClock

 // the clock object returned above is both so we cast it.

 if ((clockObject is IMFPresentationClock) == true)

 {

 // the cast is valid, so get the time from it, this comes back as an Int64

 // even though it will never be negative

 (clockObject as IMFPresentationClock).GetTime(out presentationClock);

 }

 }

 finally

 {

 // release the clock object we just obtained

 if (clockObject != null)

 {

 Marshal.ReleaseComObject(clockObject);

 }

 }

 // return what we got

 return (UInt64)presentationClock;

Rendering Audio and Video

238

 }

 }

}

Source: TantaCommon::TantaWMFUtils::GetPresentationTimeFromSession

The first thing we have to do is get the IMFClock object from the Media Session.

// get our presentation clock, this needs to be released.

hr = mediaSession.GetClock(out clockObject);

What we actually want is an object that implements the IMFPresentationClock

interface but there is no direct way to get that from the Media Session. It is not obvious

but the IMFClock object we get back from the GetClock() call is actually an

IMFPresentationClock as well so a quick cast resolves that problem for us.

// the cast is valid, so get the time from it, this comes back as an Int64

// even though it will never be negative

(clockObject as IMFPresentationClock).GetTime(out presentationClock);

After that, we can just issue a simple GetTime() call on the IMFPresentationClock

object and we will get the current Presentation Clock as an Int64 – and the value of this

will be the number of 100ns units since the start of play.

As with the duration, once we have the time value it is trivial to convert it into seconds

or some human readable format.

SEEKING FORWARD AND BACK IN THE STREAM

Once you have the value of the current Presentation Clock, seeking to a new position in

the video stream is fairly simple. In order to seek to a new position all that is required is

to call the Media Session Start() command with a new Presentation Clock value as an

input parameter. The code below, clipped from the TantaFilePlayerAdvanced sample,

demonstrates how to set up a jump 5 seconds forward in the stream.

// we only permit this action if we are started or paused

if (((PlayerState == TantaEVRPlayerStateEnum.Started) ||

 (PlayerState == TantaEVRPlayerStateEnum.Paused))==false)

{

 LogMessage("not started quitting now");

 return;

}

// In order to seek forward 5sec really all we do here is add

// 5 Sec (in 100ns chunks) to the current presentation clock

// and call the session start function again

// get the current time

UInt64 presentationTime = TantaWMFUtils.GetPresentationTimeFromSession(mediaSession);

// calc the new time, this call checks so as not to make the new time go out of bounds

presentationTime = TantaWMFUtils.AddSecondsTo100nsTime(5, presentationTime, VideoDuration);

// perform the seek, note we have to convert the new presentation time to an Int64

// this is the way that WMF uses it even though it will never go negative.

HResult hr = mediaSession.Start(Guid.Empty, new PropVariant((Int64)presentationTime));

if (hr != HResult.S_OK)

{

 throw new Exception("call to mediaSession.Start failed. Err=" + hr.ToString());

}

 Rendering Audio and Video

 239

// were we paused? Make sure we stay paused

if(PlayerState == TantaEVRPlayerStateEnum.Paused)

{

 hr = mediaSession.Pause();

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to mediaSession.Pause() failed. Err=" + hr.ToString());

 }

 PlayerState = TantaEVRPlayerStateEnum.PausePending;

}

Source: TantaCommon::ctlTantaEVRFilePlayer::button5SecPlus_Click

The procedure is quite straight forward, first the current presentation time must be

obtained. The call to the helper function GetPresentationTimeFromSession (discussed in

the previous Getting the Duration and the Current Progress section) takes care of that.

The presentation time value is recorded in 100 nanosecond units and the subsequent

call to the AddSecondsTo100nsTime helper function takes an input value in seconds and

adjusts presentation time appropriately.

// get the current time

UInt64 presentationTime = TantaWMFUtils.GetPresentationTimeFromSession(mediaSession);

// calc the new time, this call checks so as not to make the new time go out of bounds

presentationTime = TantaWMFUtils.AddSecondsTo100nsTime(5, presentationTime, VideoDuration);

Actually, there is more going on in this call than is first obvious. The presentation time

must never be allowed to go below zero. This will cause an error when it is applied.

Equally, the adjusted presentation time cannot be allowed to exceed the total duration

or a similar error will occur. The AddSecondsTo100nsTime helper function handles all of

this – in particular, note that the VideoDuration property is used to pass in the

previously obtained total video duration for comparison purposes.

The new Presentation Clock value is passed in using the Media Session Start()

command.

HResult hr = mediaSession.Start(Guid.Empty, new PropVariant((Int64)presentationTime));

It is the usage of the new PropVariant((Int64)presentationTime) parameter that

tells the Media Session where to start. Note the cast of the presentation time to an

Int64. As mentioned previously, the Presentation Clock is treated as an Int64 in

Windows Media Foundation and the Tanta sample code treats the presentation clock as

a UInt64 for manipulation and storage purposes. In addition, particularly note the

discussion in the PropVariant section of the MF.Net Programming Fundamentals

chapter. There are some significant differences in the C# implementation of

PropVariants. In C#, a UInt64 PropVariant is not the functional equivalent of an Int64

PropVariant like it is in C++.

To start at the beginning of the media stream, an empty value can be passed in on the

Media Session Start() command. Indeed, if you look at other calls to the Start()

Rendering Audio and Video

240

command on the Media Session in the TantaFilePlayer sample you will see an empty

PropVariant value is passed in.

HResult hr = mediaSession.Start(Guid.Empty, new PropVariant());

if (hr != HResult.S_OK)

{

 throw new Exception("Call to mediaSession.Start failed. Err=" + hr.ToString());

}

Source: TantaFilePlayback::TantaCommon::ctlTantaEVRFilePlayer::StartPlayback()

In order to seek backward simply subtract the appropriate amount of 100 nano-second

units from the Presentation Clock and call the Media Session Start() command as

before. As mentioned previously, take care to not let the Presentation Clock go below

zero or you will get an error when you apply it.

IMPORTANT NOTE: The seeking technique described

above works well for a simple button press. If you are

generating a flood of seek actions then you need to make

sure you do not overwhelm the session with seek

commands.

As the above note indicates, there you have to take great care to avoid flooding the

Media Session with seek requests. Scroll Bars or Track Bars, in particular, are notorious

for this. For example, it is common to tie the position of the Thumb control in a

horizontal Scroll Bar control to the position in the image stream being viewed. As the

user drags the Thumb control forward and backwards, a constant barrage of seek

requests could be generated – far more than the Media Session can handle.

In such cases the seek requests must be throttled. The section of code below, clipped

from the TantaFilePlayer sample, shows one method of how this can be done. The

PlayerState variable acts as a semaphore to indicate if the Media Session is in the act

of changing things. In particular, note how the PlayerState is set to a value of

TantaEVRPlayerStateEnum.StartPending immediately after the session is started.

// we only permit this action if we are started or paused, We do NOT want to flood the

// session with seek requests. The act of seeking will set PlayerState to something else

// and it will be reset in the media sessions Callback Object.

if (((PlayerState == TantaEVRPlayerStateEnum.Started) ||

 (PlayerState == TantaEVRPlayerStateEnum.Paused)) == false)

{

 return;

}

switch(e.Type)

{

 case ScrollEventType.EndScroll:

 // all scrolling actions have ended

 return;

 case ScrollEventType.LargeIncrement:

 // the user clicked in the scroll bar to the right of the Thumb

 // convert a value in the range of 0 – 1000 to a video position. In this

 // case it is a delta offset

 Rendering Audio and Video

 241

 deltaTime = TantaWMFUtils.ConvertRangeValueToVideoPosition(

 VideoDuration,

 TantaWMFUtils.DEFAULT_LARGE_INCREMENT_FOR_DURATIONRANGE);

 // get the current presentation time

 presentationTime = TantaWMFUtils.GetPresentationTimeFromSession(mediaSession);

 // calc a new time

 presentationTime += deltaTime;

 if (presentationTime > VideoDuration) presentationTime = VideoDuration;

 // start the session with the new time

 hr = mediaSession.Start(Guid.Empty, new PropVariant((Int64)presentationTime));

 // flag this it will inhibit future calls until the session has completely started

 PlayerState = TantaEVRPlayerStateEnum.StartPending;

 return;

... more code

Source: TantaCommon::ctlTantaEVRFilePlayer::scrollBarVideoPosition_Scroll

The PlayerState semaphore is reset to a value of

TantaEVRPlayerStateEnum.Started in the Media Session’s

HandleMediaSessionAsyncCallBackEvent Callback Object.

case MediaEventType.MESessionStarted:

 // Raised when the IMFMediaSession::Start method completes asynchronously.

 PlayerState = TantaEVRPlayerStateEnum.Started;

 break;

Source: TantaCommon::ctlTantaEVRFilePlayer::HandleMediaSessionAsyncCallBackEvent

Callback Objects are the Media Session’s mechanism for transmitting event state

changes back to the owner code. In this case we can rely on the MESessionStarted

event to let us know that the Media Session really has started and we set the

PlayerState semaphore to a value of TantaEVRPlayerStateEnum.StartPending and

this is then used in the event handler of the scrollBarVideoPosition control to enable it

to send another seek request through the system.

FAST FORWARDING AND REWINDING THE EVR

A Media Session provides dedicated playback controls for the fast forwarding and

rewinding of the media stream. However, a Media Session cannot provide all possible

forward and reverse speed values - there are minimum and a maximum values you can

use. Requests outside the minimum or maximum speeds will throw an error - as will

requesting a negative rate (rewind) if reverse speeds are not supported.

If rewind or fast forward speeds suitable for your requirements are not supported, you

can usually implement both operations via a clever seeking mechanism. This, of course,

is not a true rewind or fast forward – but from the users perspective it functions much

the same. There is much discussion of the techniques involved with this in the Seeking

Forward and Back in the Stream section above.

To change the playback rate, the IMFRateControl interface is used. The

IMFRateSupport interface is used to determine the range of playback rates (including

reverse playback) that are supported. Both the IMFRateControl and the

Rendering Audio and Video

242

IMFRateSupport interface are services which are obtained from the Media Session

using an MFGetService call.

In order to adjust the playback speed, the rate at which the stream of images appear in

the display window must either be increased or slowed down. This speed is normalized

to a value of 1 and all variations are specified relative to that. A playback rate of 1 is the

normal, real time, forward play. A playback rate of 2 is fast forward at 2x speed and,

similarly, a playback rate of -1 is reverse play at normal speed. Partial values are also

allowed so it is possible, for example, to set a fast forward speed of 1.5 which is a 1.5x

forward rate. Perhaps not so obviously, a value of 0.5 could be used to configure half-

speed slow motion. A playback rate of 0 will step you forward one frame – after that, to

get another frame, you would have to seek to a new position using the techniques

described in the Seeking Forward and Back in the Stream section.

The playback rate cannot be adjusted while the Media Session is playing. It is possible to

make a SetRate call to change it while the session is playing – but the request will just

be ignored and no error will be returned. In order to change the playback rate the

Media Session must be stopped, or in some cases, paused. Stopping the Media Session,

changing the rate and restarting it always works. However, the user might see a brief

flash on the screen. Pausing the Media Session works well when transitioning, either up

or down, from one positive rate to another. Pausing and restarting the Media Session

does not seem to exhibit a flash but, as described below, pausing and restarting is not

always possible. The permitted transitions are listed below and these are also

documented on the IMFRateControl::SetRate method help page.

Playback
State

Forward/Reverse Forward/Zero Reverse/Zero

Running No No No

Paused No Yes No

Stopped Yes Yes Yes

Permitted Playback Rate Transitions

Be aware that when the Media Session is paused, or stopped, in order to adjust the

playback rate you have to provide a Presentation Clock value when restarting. Not

providing any value at all (null) or an empty PropVariant class (new PropVariant())

will simply restart the video stream from the very beginning. This is unlikely to be the

desired effect when fast forwarding. Here is some example code illustrating the fast

forwarding process.

// we have previously checked that the current rate is > 0 here otherwise we would

// have to Stop() not Pause() here.

UInt64 presentationTime = TantaWMFUtils.GetPresentationTimeFromSession(mediaSession);

 Rendering Audio and Video

 243

mediaSession.Pause();

float rateRequested = 1.2f;

bool wantThinned = true;

outBool = TantaWMFUtils.SetCurrentPlaybackRateOnSession(mediaSession,

 wantThinned, rateRequested);

// start the session back up

mediaSession.Start(Guid.Empty, new PropVariant((Int64)presentationTime));

PlayerState = TantaEVRPlayerStateEnum.StartPending;

Source: Not in Tanta Samples

The above code uses calls into the TantaWMFUtils library to simplify the process of

acquiring the presentation time and setting the rate. A quick look at the TantaCommon

source code will soon show that these calls are really just wrappers for commonly used,

but complex, multi-line operations.

A call to the SetRate() method of the IMFRateControl interface is used to adjust the

presentation rate. The process first obtains the IMFRateControl interface from the

Media Session and then uses that interface to adjust the rate. The code below

demonstrates this process – in particular, note how the IMFRateControl interface is

released at the finally block at the end.

HResult hr;

IMFRateControl rateControlService = null;

object rcServiceObj = null;

// sanity check

if (mediaSession == null) return false;

try

{

 // We get the rate control service from the Media Session.

 hr = MFExtern.MFGetService(

 mediaSession,

 MFServices.MF_RATE_CONTROL_SERVICE,

 typeof(IMFRateControl).GUID,

 out rcServiceObj

);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MFExtern.MFGetService failed. Err=" + hr.ToString());

 }

 if (rcServiceObj == null)

 {

 throw new Exception("call to MFExtern.MFGetService failed. rcServiceObj == null");

 }

 // set the rate control service now for later use

 rateControlService = (rcServiceObj as IMFRateControl);

 // now set the current rate on the rate control interface

 hr = rateControlService.SetRate(wantThinned, newRate);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to rateControlService.SetRate failed. Err=" + hr.ToString());

 }

 return true;

}

finally

{

 // release the rate control interface

 if (rateControlService != null)

 {

 Marshal.ReleaseComObject(rateControlService);

 rateControlService = null;

 }

}

Source: TantaCommon:TantaWMFUtils:SetCurrentPlaybackRateOnSession

Rendering Audio and Video

244

As discussed previously, note that the newRate variable is a float. This value is always

relative to 1 so a value of 0.5f would be used to configure half-speed slow motion

playback and a value of 1.8f would be used to configure a 1.8x fast forward speed. Also

note that, although it is not shown, the Media Session would be stopped or paused prior

to the above code being called and it would be restarted immediately afterwards.

Also note that in the above code fragment, a Boolean variable named wantThinned is

also passed in and so it would seem that now is a good time to talk a bit more about

what Thinning is and why you might or might not want to use it.

If you are presenting the video to the user at a normal speed you are, by definition

presenting every frame the video stream possesses on the screen. When fast

forwarding, you can similarly choose to present every frame at a faster rate or you can

choose to skip various frames and present only a selection of intermediate ones. The

second method is called Thinning.

Clearly there are limits to how fast Windows Media Foundation can render frames to

the video display and if you permit Thinning in a fast forward (or rewind) mode you will

have much faster image rates available to you. This, it would seem, is an ideal situation

– the user will not miss a few frames so there is no need to display each and every one

and thus extremely fast rates are possible.

However, as always, things are not so simple. Most storage formats, for example, do not

store every frame as a complete picture each of which is a standalone displayable

image. Instead, most video compression techniques use a key-frame and intermediate

frame mechanism. Thus the first frame on display is the complete image and then a

sequence of following frames form what are basically deltas in which only the changes

to the key frame are recorded. This achieves some spectacular compression ratios since,

for example, a scene with an unchanging background would not have to contain any

information about the background in most frames. However, there is the disadvantage

that you cannot just display any random intermediate frame and expect to get the

image. Up, and until, the next key frame is present in the stream the video image on the

display is a composite of the key frame and all subsequent intermediate delta frames.

Thus the problem with Thinning arises as a side effect of video compression. When fast

forwarding, for example, it is usually not possible to simply display every fourth frame in

order to get a 4x speed increase. When dealing with compressed video streams, the

data on the fourth frame probably isn’t sufficient to display the entire intended image.

Instead, in order to display any arbitrary frame, it would be necessary to go back to the

previous key frame and then apply every delta frame up to the actual frame you wish to

 Rendering Audio and Video

 245

display. Of course, if every frame is processed then, by definition, Thinning is not really

being applied and all you are doing is saving a bit of time when drawing on the screen.

Typically, MP4 video streams only insert a key frame every 5 to 10 seconds. This value is

configurable by the software creating the MP4 file. DVD compressed video usually

inserts a key frame every 15 frames or so. If you use Thinning on a compressed stream

like MP4 you may well find that your fast forward or rewind operation jumps about

quite a bit and you see an annoying amount of shudder and jitter in the displayed video.

When the Enhanced Video Renderer is dealing with a compressed stream with plenty of

key frames, such as that used in DVDs which typically display 25 frames a second,

Thinning can be used without much problem. Typically, in such situations, the fast

forward progress looks smooth because there is less than a second between each

display image.

It is possible to detect the maximum speed which can be used in un-Thinned mode and

then switch in to Thinned mode for speeds above that. It all depends on the application

– jumping forward 5 or 10 seconds when really forwarding fast may not matter in an

hour long MP4. It is likely to matter a great deal if the MP4 video is only 30 seconds

long.

The maximum and minimum display rates in both Thinned and un-Thinned mode can be

determined by querying the IMFRateSupport interface. The code below shows the

process.

public static bool GetFastestRate(

 IMFMediaSession mediaSession,

 MFRateDirection rateDirection,

 bool wantThinned,

 out float supportedRate)

{

 HResult hr;

 IMFRateSupport rateSupportService = null;

 object rsServiceObj = null;

 supportedRate = 0;

 // sanity check

 if (mediaSession == null) return false;

 try

 {

 // We get the rate support service from the Media Session.

 hr = MFExtern.MFGetService(

 mediaSession,

 MFServices.MF_RATE_CONTROL_SERVICE,

 typeof(IMFRateSupport).GUID,

 out rsServiceObj

);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MFExtern.MFGetService failed. Err=" + hr.ToString());

 }

 if (rsServiceObj == null)

 {

 throw new Exception("call to MFExtern.MFGetService failed. rsServiceObj == null");

 }

 // set the rate control service now for later use

 rateSupportService = (rsServiceObj as IMFRateSupport);

 // now get the slowest rate

Rendering Audio and Video

246

 hr = rateSupportService.GetFastestRate(rateDirection,

 wantThinned,

 out supportedRate);

 if (hr == HResult.MF_E_REVERSE_UNSUPPORTED)

 {

 // just let the user know the rate is not supported

 return false;

 }

 else if (hr == HResult.MF_E_THINNING_UNSUPPORTED)

 {

 // just let the user know the rate is not supported

 return false;

 }

 else if (hr != HResult.S_OK)

 {

 throw new Exception("call to rateSupportService.GetFastestRate failed.“);

 }

 // rate is supported

 return true;

 }

 finally

 {

 // release the rate control interface

 if (rateSupportService != null)

 {

 Marshal.ReleaseComObject(rateSupportService);

 rateSupportService = null;

 }

 }

}

Source: TantaCommon:TantaWMFUtils:GetFastestRate

The procedure to obtain the fastest rate probably seems quite familiar by now. The

IMFRateSupport interface is obtained from the session via an MFGetService call. Then

the GetFastestRate() method is called on that interface in order to obtain the fastest

rate. There is a similar GetSlowestRate() method. In particular, note that the Thinning

status is specified in the wantThinned variable. Of course, the fastest (or slowest)

display rate is highly dependent on whether Thinning is permitted to be used. The other

thing to note in the above code is the rateDirection parameter. This is an enum

named MFRateDirection and it specifies the direction (forward or reverse) for which

the fastest speed is being requested.

There are a total of eight options for which speeds may be collected (forward, reverse),

(fastest, slowest) and (Thinned, un-Thinned). This is a bit of a pain to acquire and the

Tanta library provides an automated way of collecting all of this information. The

TantaCommon project contains a class named

TantaMediaSessionPlaybackRateCapabilities which acts as a container for this

information and can automatically acquire it. A sample call would be as follows…

TantaMediaSessionPlaybackRateCapabilities msRates = new

 TantaMediaSessionPlaybackRateCapabilities(mediaSession);

if (msRates != null) msRates.DumpPlaybackRatesToLog();

Source: Not in Tanta Samples

The act of creating the TantaMediaSessionPlaybackRateCapabilities class with a

valid Media Session will obtain all the required data. The contents can subsequently be

accessed with calls to properties like FastestForwardSpeedThinned and

 Rendering Audio and Video

 247

FastestReverseSpeedNonThinned. Note that reverse speeds are returned as positive

numbers and must be multiplied by -1 before use in a SetRate() call. A negative return

value indicates that the operation is not supported at all. Thus a call to

FastestReverseSpeedNonThinned returning a value of -1 means that reverse play is

not supported in un-Thinned mode.

The above call to the DumpPlaybackRatesToLog() method will write the contents of

the TantaMediaSessionPlaybackRateCapabilities class to the log file. An example

of the output from this call is shown below.

ReverseSpeedIsSupportedNonThinned=False

FastestForwardSpeedNonThinned=2

SlowestForwardSpeedNonThinned=0.125

FastestReverseSpeedNonThinned=-1

SlowestReverseSpeedNonThinned=-1

ReverseSpeedIsSupportedThinned=True

FastestForwardSpeedThinned=8

SlowestForwardSpeedThinned=0.125

FastestReverseSpeedThinned=8

SlowestReverseSpeedThinned=0.125

Source: Not in Tanta Samples

There are a variety of other useful routines in the TantaWMFUtils class. Two items which

may be of particular use are the IsPlaybackRateSupported function which is a

wrapper for an IsRateSupported() call on the IMFRateSupport interface. This

function will accept a proposed rate and indicate if that value is supported or not. The

IsRewindSupported function provides a similar yes or no answer to detect if it is

possible to invoke reverse play with negative speeds.

It should be noted that it seems that the Enhanced Video Renderer does not support

reverse play very well on most stream types. This is not too surprising, if you recall the

previous discussion regarding the mechanics of Thinning. The operation is very difficult –

the EVR rendering engine would have to look much further back in the stream to find

the key frame and then build forward to the display frame – for each frame as it stepped

back through the sequence. This would be extremely slow and problematic. You will

probably find, for most versions of the Enhanced Video Renderer, that reverse play is

not supported in un-Thinned mode as it is just too much work. In Thinned mode on

things like MP4 streams you may well find the stream plays in reverse but that it is

extremely jerky as the displayed image just jumps backwards between key frames.

TAKING A SNAPSHOT OF THE VIDEO DISPLAY

There are many situations in which the user of an application might wish to take a still

snapshot of the video image on display. True, this can be done on a Windows system by

pressing the Alt-PrintScreen key and then cleaning up the resulting screen shot in

Rendering Audio and Video

248

some sort of image processing software. This method is somewhat tedious however,

and there is a better way. The Enhanced Video Renderer contains a member function

named GetCurrentImage() which will convert the image on display, at the moment it

is called, into a bitmap image (.bmp) file.

It should be noted that the GetCurrentImage() call does not actually supply all of the

contents of the bitmap file. It supplies only the important bits and you have to add your

own file header and bolt them all together. This is an easy enough thing to do, however,

the really annoying part is that the documentation does not bother to mention that you

need to do this and so you are left wondering why your saved bitmaps are always

unreadable. Quite, why the implementers of the GetCurrentImage() function didn’t

see fit to just sort it all out internally and return a fully formed bitmap image is one of

the mysteries of the universe which will probably never be explained.

Below is some sample code from the Tanta ctlTantaEVRFilePlayer control example

which demonstrates how to take a snapshot of the display area of the Enhanced Video

Renderer. Note that the EVR must be running for this code to be functional.

private void buttonTakeSnapShot_Click(object sender, EventArgs e)

{

 HResult hr;

 BinaryWriter bitmapWriter = null;

 BitmapInfoHeader workingBitmapInfoHeader = new BitmapInfoHeader();

 IntPtr bitmapData = IntPtr.Zero;

 int bitmapDataSize = 0;

 long bitmapTimestamp = 0;

 // we have to be playing or paused

 if (((PlayerState == TantaEVRPlayerStateEnum.Started)

 || (PlayerState == TantaEVRPlayerStateEnum.Paused)) == false)

 {

 // just send a warning beep

 System.Media.SystemSounds.Beep.Play();

 return;

 }

 try

 {

 // set the size here. the docs briefly state you have to do this in a one

 // liner towards the bottom. However, they REALLY mean it - nothing will

 // work without this being done

 workingBitmapInfoHeader.Size = Marshal.SizeOf(typeof(BitmapInfoHeader));

 // get the image on the screen now. This will give us the image data and the

 // bitmap info header. However, be aware that there are two headers associated

 // with every .bmp file. The first is a file header (which we have to build

 // ourselves) and the second is an info header which we are given in the call below.

 // Also note that the memory for the bitmapData variable we receive

 // here needs to be freed

 hr = evrVideoDisplay.GetCurrentImage(

 workingBitmapInfoHeader,

 out bitmapData,

 out bitmapDataSize,

 out bitmapTimestamp);

 if (hr != HResult.S_OK)

 {

 throw new Exception("buttonTakeSnapShot_Click failed. Err=" + hr.ToString());

 }

 // bitmapData is an IntPtr. Use Marshal to copy the video data out into a byte array

 // bitmapDataSize is the length of bitmapData

 byte[] managedArray = new byte[bitmapDataSize];

 Marshal.Copy(bitmapData, managedArray, 0, bitmapDataSize);

 Rendering Audio and Video

 249

 // build the output filename. By default this is the directory

 // of the playing video file

 string outputBitmapFile = Path.Combine(

 SnapshotDirectory,

 TantaWMFUtils.BuildFilenameWithTimeStamp(BITMAP_PREFIX, BITMAP_EXTENSION));

 // now we have to build and populate the bitmap fileheader. None of the

 // documentation tells you that you have to this - but the bitmap file will

 // not be readable if you do not

 TantaBitMapFileHeader fileHeader = new TantaBitMapFileHeader();

 fileHeader.bfOffBits = (uint)(Marshal.SizeOf(fileHeader) +

 Marshal.SizeOf(workingBitmapInfoHeader));

 fileHeader.bfReserved1 = 0;

 fileHeader.bfReserved2 = 0;

 fileHeader.bfSize = (uint)(Marshal.SizeOf(fileHeader) +

 Marshal.SizeOf(workingBitmapInfoHeader) + bitmapDataSize);

 fileHeader.bfType = 0x4d42;

 // Create a binary writer to output the file. We will just populate the file

 // with the newly created fileheader, the info header we got from the

 // GetCurrentImage call and the actual image data itself. We just write these

 // sequentially one after the other.

 bitmapWriter = new BinaryWriter(File.OpenWrite(outputBitmapFile));

 // convert the file header to a byte[]. This is surprisingly complex in C#

 byte[] fileBufferAsBytes = TantaWMFUtils.ConvertStructureToByteArray(fileHeader);

 // write the file header out to the new bitmap file

 bitmapWriter.Write(fileBufferAsBytes, 0, Marshal.SizeOf(fileHeader));

 // convert the info header to a byte[]

 byte[] infoBufferAsBytes =

 TantaWMFUtils.ConvertStructureToByteArray(workingBitmapInfoHeader);

 // write the info header out to the new bitmap file

 bitmapWriter.Write(infoBufferAsBytes, 0, workingBitmapInfoHeader.Size);

 // write the actual data of the bitmap

 bitmapWriter.Write(managedArray);

 // close up

 bitmapWriter.Flush();

 bitmapWriter.Close();

 bitmapWriter = null;

 // tell the user audibly that things went well

 System.Media.SystemSounds.Hand.Play();

 }

 catch

 {

 // we did not succeed

 System.Media.SystemSounds.Beep.Play();

 }

 finally

 {

 // clean up

 if(bitmapData != null)

 {

 Marshal.FreeCoTaskMem(bitmapData);

 }

 if(bitmapWriter != null)

 {

 bitmapWriter.Close();

 bitmapWriter = null;

 }

 }

}

Source: TantaCommon::ctlTantaEVRFilePlayer::buttonTakeSnapShot_Click

The GetCurrentImage() call takes four parameters. The first is a BitmapInfoHeader

struct. These are treated just like classes in MF.Net and so can just be passed in

normally. However, do realize that you need to set information in this struct prior to

passing it in (discussed below) and that you will also get information back in it which you

will later need to use to build the bitmap.

Rendering Audio and Video

250

The remaining parameters are defined as out values. They are the bitmap data itself (an

IntPtr), the size of the bitmap data (an int) and a timestamp (a long). The fact that

the bitmap data is an IntPtr means that accessing the actual data requires a special call

to Marshal the information into .NET’s managed memory space - this too is discussed

below. The timestamp is presented as the number of 100ns units since the start of play.

You may wish to review the discussion of the Presentation Clock in the Getting the

Duration and the Current Progress section for more information on this topic. We

could use this timestamp to build a file name if we wished, but the code above prefers

to use the current system date and time for that purpose.

The BitmapInfoHeader structure is passed into the GetCurrentImage() call and its

Size property needs to be initialized first. The documentation does state this - but

because the requirement is not emphasized it is easy to miss. If you do not set the size

properly, the GetCurrentImage() call will fail. Since we are dealing with C# it is not

possible to directly discover the size of the BitmapInfoHeader structure as we would in

C or C++. Instead, as can be seen in the sample code below, the

Marshal.SizeOf(typeof(BitmapInfoHeader)) call is used to perform this operation.

// set the size here.

workingBitmapInfoHeader.Size = Marshal.SizeOf(typeof(BitmapInfoHeader));

// get the image on the screen now.

hr = evrVideoDisplay.GetCurrentImage(

 workingBitmapInfoHeader,

 out bitmapData,

 out bitmapDataSize,

 out bitmapTimestamp);

After the GetCurrentImage() call successfully completes, we will have a fully populated

BitmapInfoHeader structure, the bitmap data IntPtr will point at the data for the

bitmap and the bitmap size variable will be populated. Note that the data returned for

the bitmap needs to be released once you have copied it elsewhere otherwise you will

get a memory leak.

In order to use the bitmap data, we need to convert it to a more accessible format in

managed memory. A byte[] array is the typical container. The section of code below

(reproduced from the full sample above) uses the bitmap data size and a

Marshal.Copy() call to perform the copy and conversion of an IntPtr to a byte[]

array.

// bitmapData is an IntPtr. Use Marshal to copy the video data out into a byte array

// bitmapDataSize is the length of bitmapData

byte[] managedArray = new byte[bitmapDataSize];

Marshal.Copy(bitmapData, managedArray, 0, bitmapDataSize);

As mentioned above, another essential thing to realize when creating a bitmap snapshot

is that there are actually two header components associated with every bitmap. These

headers are the BitmapFileHeader and the BitmapInfoHeader and it is important to

 Rendering Audio and Video

 251

be aware that these are not just two names for the same thing. They are separate,

distinct and you need them both. Moreover, the GetCurrentImage() function does not

give you the BitmapFileHeader and you will need to build and populate this object

yourself prior to saving the bitmap image. Neither C# nor MF.Net contain a definition

for the BitmapFileHeader and so the TantaCommon library contains a definition named

TantaBitMapFileHeader. MF.Net does, however, contain a definition for the

BitmapInfoHeader struct in the WindowsMediaFoundation.Misc library and that is the

definition used in the above sample code.

The population of the BitMapFileHeader and struct is shown below (reproduced from

the full sample code above).

// now we have to build and populate the bitmap fileheader. None of the

// documentation tells you that you have to this - but the bitmap file will

// not be readable if you do not

TantaBitMapFileHeader fileHeader = new TantaBitMapFileHeader();

fileHeader.bfOffBits = (uint)(Marshal.SizeOf(fileHeader) +

 Marshal.SizeOf(workingBitmapInfoHeader));

fileHeader.bfReserved1 = 0;

fileHeader.bfReserved2 = 0;

fileHeader.bfSize = (uint)(Marshal.SizeOf(fileHeader) +

 Marshal.SizeOf(workingBitmapInfoHeader) + bitmapDataSize);

fileHeader.bfType = 0x4d42;

// convert the file header to a byte[]. This is surprisingly complex in C#

byte[] fileBufferAsBytes = TantaWMFUtils.ConvertStructureToByteArray(fileHeader);

As can be seen, the fields to populate and the calculation of the correct values for them

are not especially obvious. However, the procedure is not all that difficult if you have an

example. Note the conversion of the fileHeader value to a byte[] format at the end.

Once you have a populated BitmapFileHeader, you also need to get the

BitmapInfoHeader in a byte[] format.

// convert the info header to a byte[]

byte[] infoBufferAsBytes =

 TantaWMFUtils.ConvertStructureToByteArray(workingBitmapInfoHeader);

Once you have all three parts, the creation of the bitmap file is simply a matter of

writing them out one immediately after the other to a file with a .bmp extension. The

order of the output is always the BitMapFileHeader first, then the BitmapInfoHeader

and finally the bitmap data.

// write the file header out to the new bitmap file

bitmapWriter.Write(fileBufferAsBytes, 0, Marshal.SizeOf(fileHeader));

// write the info header out to the new bitmap file

bitmapWriter.Write(infoBufferAsBytes, 0, workingBitmapInfoHeader.Size);

// write the actual data of the bitmap

bitmapWriter.Write(managedArray);

// close up

bitmapWriter.Flush();

bitmapWriter.Close();

Rendering Audio and Video

252

This can be seen in the above sample code where a standard C# BinaryWriter object is

used to output and concatenate all the data. In particular, note how data written by the

BinaryWriter is cleared from memory with a Flush() call before it is closed. Once this

is done, the bitmap file is on the disk and should be readable by any software which can

operate on bitmaps.

It is important to free up the bitmap data memory returned by the GetCurrentImage()

function. This operation is performed in the sample code with a call to

FreeCoTaskMem() in the finally{} block.

// clean up

if(bitmapData != null)

{

 Marshal.FreeCoTaskMem(bitmapData);

}

 253

Windows Media Foundation:
Getting Started in C#

Chapter 9

WORKING WITH TRANSFORMS
The Transforms section in The WMF Components chapter of this book provided an

overview of Windows Media Transforms (WMT’s) and if you are unfamiliar with the

contents of that section and of the discussion of Pipelines in the Windows Media

Foundation Architecture chapter, you will probably find it very useful to go back and

review those two sections now. An understanding of those concepts will greatly assist

you in absorbing the following information.

A Transform is an object that processes the data in the Pipeline as that data traverses

from a Media Source to a Media Sink. As such, a Transform has both inputs and outputs

– if it only had outputs it would be a Media Source and if it only had inputs it would be a

Media Sink.

Transforms are used for all sorts of purposes and the requirement to support a wide

variety of functions has had an effect on the design of its architecture. For example, say

it was desirable to present the video data and audio data from a camera in two locations

– on the screen in a real time window and streamed over the Internet for a permanent

record. A Transform designed as a splitter (a demultiplexer or Tee) could be used to

copy the incoming video data and place it on two different outputs. In such a situation,

it would be said that there is a branch in the Topology at that point. Similarly, a case can

Working With Transforms

254

be made for a requirement to have multiple inputs multiplexed onto a single output –

perhaps two video feeds with one displaying as a video window in a larger video.

Thus it is necessary that the architecture of WMF Transforms has the capability of

supporting one or more inputs and also one or more outputs. The actual number of

inputs and outputs depends on the purpose of the Transform and unless a Transform

actually supports multiple outputs you cannot make it do so. In other words, the design

supports multiple inputs and outputs but any one Transform is only required to have

one input and one output at minimum. Many, if not most, Transforms have only a single

input and a single output.

The data moving though each input and output in a Transform is called a stream. If, as in

the above example, the Transform splits the input into multiple outputs there would be

one stream going into the Transform and multiple streams coming out of it. There may

well be other Transforms in each of the two resulting branches and the Topology of

each branch need not be the same.

Note that the previous example mentioned Video and Audio data as outputs from a

Camera and Microphone. These are two examples of a Media Major Types (there are

others). The Media Source will present these two Media Major Types as two Media

Streams – thus the first branch in the Topology would start at the Media Source. In

general, a Transform is expected to handle only one Media Major Type. In other words,

there can be video transforms and audio transforms – but any one Transform is not

both. This makes sense – since the Topology has branched long before the stream

reaches the Transform there is no need

for a Transform to be able to deal with

both Media Major Types.

This is not to say that simply because the

Transform only has to deal with one

Media Major Type that the situation is

necessarily simple for it. For any one

Media Major Type there can be a

multitude of format standards, frame

sizes and compression methods available.

Taking a USB camera on a PC as an example (in Figure 9.1 a Logitech C920 Webcam), we

can see there are a number of formats and frame sizes on offer. The image below does

not show all of the available formats – there are over 60 of them for that camera and

those are just the ones for uncompressed video.

Figure 9.1: The TantaVideoFormats Sample Application

 Working With Transforms

 255

The Media Source must be told the Media Sub-Type it will use when it obtains data from

the camera. Which Media Sub-Type actually gets selected from the many on offer

usually depends on the application and its interaction with the Media Source. Perhaps

you, as the programmer, picked one for it and effectively just said “Use NV12 format in

1920x1080” or perhaps there was some other algorithmic mechanism to choose one. In

many cases, however, the Media Source implemented in the application just uses the

cameras default Media Sub-Type – which goes a long way towards explaining why many

applications display webcam video at a resolution of 640x480 even though just about

every camera is capable of much better these days.

Speaking of speed, it is probably worth mentioning that, if the camera is sending the

data over a relatively slow link (USB or the Internet for example), it would probably be

preferable to have the Media Source choose a highly compressed Media Sub-Type such

as H.264 from the video source. This would mean that the data traversing the slowest

part of the transmission path would already be compressed by the camera and thus a

much larger frame size might be usable. Of course, a suitable decompression Transform

might have to be added to the Topology in order to convert the data into a format

acceptable to the Media Sink if the Media Sink cannot accept that format directly.

The presence of compression and decompression transforms (collectively known as

Codecs) in the Pipeline brings up an important point. Although a decompression

transform will probably only have one input and one output (and hence one input

stream and one output stream) the amount of data leaving the Transform will be much

greater than the amount of data entering it. The data entering the Transform will

essentially be a densely compressed binary stream and the output will be a series of

blocks of data - each of which contains a collection of meaningful information. For a

video stream, each block will probably be one video frame – the image to display on the

output at that time. Since the media data leaving the Transform is in a different format

than the media data that entered it, the output stream of the Transform will have a

different Media Sub-Type than the input stream.

The fact that a Transform can actually generate more data than it receives means that

the Transform will have to get the storage space from somewhere. Since the quantity of

memory which might be required is entirely arbitrary, the Transform architecture must

be able to cope with the fact that the Transform might need to request additional data

buffers for the output and that this data storage must be released (or reused) when

their purpose is served or the system will quickly run out of memory. The converse is

also true in the case of a compression Transform. There will be much more data

Working With Transforms

256

entering a compression Transform than leaves it and the various memory allocation and

de-allocation requirements will need to be sorted out there as well.

THE TANTA TRANSFORM SAMPLE PROJECTS

The Tanta Sample Projects contain four applications which demonstrate the use of

Transforms. The discussion in the following sections is going to reference these samples

reasonably frequently. It would, at this point, be useful to undertake a slight digression

so that you have a useful reference to the demonstration Transforms which are

available and are aware of their purpose.

It must be noted that none of the Transforms in the Tanta Samples have been written

from the ground up. They are all derived from base classes (called the Tanta Transform

Base classes) which provide much of the functionality. The Tanta Transform Base

Classes section below will provide more detail on the base classes – for now just realize

that these classes automate a lot of the routine work which must be performed in order

to implement a Transform. This does mean though, that if you compare the code in

these Transforms to other sample code you may find on the Internet, that the structure

will look a bit different. You may have to dive into the base classes to follow the

operation of many of the IMFTransform interface functions.

Tanta Sample Projects implement a total of six Transforms - only one of which uses the

Asynchronous Mode. The other five are all Synchronous Mode. In reality, Asynchronous

Mode Transforms are a pretty specialized and advanced topic. They will not be

discussed in any detail in this book.

Four of the Transforms are implemented in the TantaTransformDirect Sample Project.

These Transforms are instantiated using the C# new operator and are added into the

Topology using the techniques discussed in the Adding Transforms To a Topology

section of The WMF Components chapter. Another is a very specialized Transform

located in the TantaCaptureToScreenAndFile Sample Project and it is similarly loaded.

The remaining Transform is implemented as a DLL in order to demonstrate that

technology. It can be found in the TantaTransformInDLL Sample Project. The

companion TantaTransformInDLLClient Sample Project dynamically loads this

Transform and interacts with it.

The Tanta Sample Transforms are as follows…

MFTTantaFrameCounter_Sync – Located in the TantaTransformDirect Sample

Project, this Synchronous Mode Transform is intended to be the simplest

 Working With Transforms

 257

possible demonstration of a Transform. It just counts the Media Samples as

they pass through. It performs in place processing and hands back as output

the same Media Sample it received as input. Because the Transform does not

perform any processing on the data (other than counting it) this Transform is

capable of processing data of any Media Sub-Type. This example Transform

also demonstrates the ability of an application to interact with a Transform

and retrieve information (the frame count) from it.

MFTTantaGrayscale_Sync – Located in the TantaTransformDirect Sample

Project, this Synchronous Mode Transform is intended to convert the image

it receives into grayscale. For purposes of demonstration, this Transform

does not perform in-place processing and returns a Media Sample containing

a copy of the input buffer to the Media Session. Since the process of

converting an image to grayscale is so intimately tied to the format of the

data, this Transform only supports the YUY2, UYVY and NV12 Media Sub-

Types.

MFTTantaGrayscale_Async – Located in the TantaTransformDirect Sample

Project, this Synchronous Mode Transform is an Asynchronous Mode version

of the MFTTantaGrayscale_Sync Transform and is intended as a

demonstration of that technology. This Transform also supports only the

YUY2, UYVY and NV12 Media Sub-Types.

MFTTantaWriteText_Sync – Located in the TantaTransformDirect Sample

Project this Synchronous Mode Transform draws user defined text on the

image. This Transform performs in-place processing and returns a Media

Sample containing the updated version of the original input buffer. Both full

over-write and semi-transparent writing modes are demonstrated. Since the

process of writing on an image to grayscale is so intimately tied to the format

of the data, this Transform only supports the RGB32 Media Sub-Type.

MFTTantaVideoRotator_Sync – Located in the TantaTransformInDLL Sample

Project this Synchronous Mode Transform is implemented as a DLL and is

able to rotate the video image. This Transform performs in-place processing

and returns a Media Sample containing the updated version of the original

input buffer. Since the process of rotating an image is so intimately tied to

the format of the data, this Transform only supports the RGB32 Media Sub-

Type. The rotation mode of the image can be set dynamically while the

Media Session is running. The TantaTransformInDLLClient Sample Project

demonstrates how the DLL containing this Transform is dynamically loaded

and various methods of interacting with it to exchange information.

Working With Transforms

258

MFTTantaSampleGrabber_Sync – This is a very specialized Synchronous Mode

Transform located in the TantaCaptureToScreenAndFile Sample Project. This

Transform copies the Media Samples that are passing through and gives

them to a Sink Writer so they can be recorded to disk. The application can

communicate with the Transform to turn the recording on and off as

required. Because this Transform does not perform any processing on the

data (other than copying it), this Transform is structured to process data of

any Media Sub-Type.

It must be recognized that the Tanta Transforms (other than the

MFTTantaSampleGrabber_Sync) are not original to the Tanta Library. These Transforms

are re-writes of the open source sample versions which ship with the MF.Net library.

Those examples, in turn, appear to be C# ports of the original C++ Transform examples.

The techniques used in these Transforms are quite sophisticated and their presence as

examples is much appreciated.

BASIC TRANSFORM OPERATION

We have seen in a previous section how a Transform always has at least one input and

at least one output. In addition, the Media Sub-Type on the input can be different than

the Media Sub-Type on the output. This was mentioned in the context of a de-

compression Transform but there are also many other Transforms dedicated specifically

to the conversion of data between various Media Sub-Types. These types of conversion

Transforms are known as Digital Signal Processors (DSP’s).

It was also mentioned that it is possible that the amount of data leaving the Transform

might be different than the amount which entered it. In order to preserve clarity, we

will not cover that aspect of Transforms in this section. Let’s leave that discussion for

the Data Processing in the Transform section further on and, for now, simply assume

the Transform can easily acquire or release all the memory it wishes (because that is

exactly what it does).

It should be mentioned that the content below is going to get kind of technical. Unless

you are going to write your own Transforms most of the information below will be

largely academic. Transforms that you just use (rather than write yourself) are typically

just “black-boxes” and your only interaction with them is setting up the streams and

Media Types they use as you build your Topology.

If you are writing your own Transform then, for the most part, what you are really doing

is implementing an IMFTransform interface wrapped around a relatively small portion

 Working With Transforms

 259

of your own custom code. In order to make the discussion of the complex

IMFTransform interface somewhat simpler, the functions it requires have been broken

up (in this book) into three functional groups. These groups are

1. The IMFTransform functions related to stream management.

2. The IMFTransform functions related to Media Type negotiations.

3. The IMFTransform functions related to the processing of the

data.

Each of these functional groups will be discussed in one of the sections below.

Don’t be too worried about implementing the IMFTransform interface, the Tanta

Library provides some base classes which make it much easier to write Transforms for

certain common situations. This book will not discuss the general case of writing the

entire Transform from the ground up. That subject could easily fill a book this size by

itself and is not an especially introductory topic. We will, however, cover usage of the

Tanta Transform base classes to build a Transform. This, and the various Tanta

Transform Sample Projects, will make it possible for you to create the infrastructure of a

Transform relatively quickly and permit you to focus on the meaningful parts of the

code such as the processing of the media data.

THE TANTA TRANSFORM BASE CLASSES

There are two Transform Base classes in the Tanta Library. These are

TantaMFTBase_Sync and TantaMFTBase_Async. As the names suggest, one

(TantaMFTBase_Sync) is a base class for Synchronous Mode Transforms and the other

(TantaMFTBase_Async) is a base class for Asynchronous Mode Transforms. The

TantaTransformInDLL Sample Project also directly incorporates its own copy of the

TantaMFTBase_Sync class (MFTBaseStandalone_Sync). This is done so that the

resulting DLL does not require the presence of the TantaCommon library.

These base classes make it easy to implement Transforms in C# - but there are some

caveats. The Tanta Transform Base classes are only usable in certain circumstances.

If your Transform inherits from one of the Tanta Transform

Base Classes (TantaMFTBase_Sync or

TantaMFTBase_Async) most of the work of supporting the

IMFTransform interface is done for you. However, these

classes only support a simple Transform model. With the

Tanta Transform Base classes you can only have one input

Working With Transforms

260

and one output stream, the Media Type on the input

stream must be identical to the Media Type on the output

stream and there can only be one output sample for every

input sample.

The Tanta Transform Base classes work by directly implementing the IMFTransform

interface. These functions, besides performing a bit of admin, do either of two things.

Many of the base class functions simply handle the work themselves and any class that

inherits from them does not even need to know they exist. Other functions simply call a

protected virtual or abstract function in the base class which has the same name

but which uses the prefix “On”. Thus, if the Media Session calls the SetOutputType()

function on the IMFTransform interface, the OnSetOutputType() function will be

called in the base class. If your Transform overrides the “On” function, then it can

handle the processing. The functions in the base class marked “virtual” are the ones you

may or may not need to override in your Transform and the ones marked “abstract” do,

of course, need to be implemented.

Classes derived from the Tanta Transform Base Classes

need only override a few abstract or virtual functions in

order to easily implement a fully operational Synchronous

or multi-threaded Asynchronous Transform.

It is important to recognize that the Transform Base Classes did not originate with the

Tanta Library. The authors of MF.Net (note, not WMF itself) designed these two base

classes and incorporated them into the open source sample code which ships with that

library. In the MF.Net sample code, the two base classes are named SyncMFTBase and

ASyncMFTBase. The Tanta Transform Base classes are directly derived from these

SyncMFTBase and ASyncMFTBase classes with few changes - mostly just more detailed

comments and reformatting. The structure and concept of the SyncMFTBase and

ASyncMFTBase classes really is some beautiful work.

We will now return to a discussion of basic Transform operations with a view to

providing you with the information you might need in order to implement your own

Transforms. Since this is intended to be an introductory book, we will simplify things by

mostly only discussing Synchronous Mode Transforms which are derived from the

TantaMFTBase_Sync base class.

 Working With Transforms

 261

TRANSFORMS AND MULTIPLE STREAMS

Transforms have at least one input stream and one output stream but they can have

more of each. It is entirely up to the Transform if it wishes to support more than one

stream on its input or output – some will support a variable number. This implies there

is a mechanism to find out things like how many input streams exist, add a new output

stream, discover the maximum number of output streams – and so on. Pretty much

anything you think you might want to do regarding the creation and configuration of

streams on a Transform can be done though the IMFTransform interface.

Does this mean that, when you write your own Transform, that you have to support the

creation of multiple streams and all the other stream related function calls? Well, the

answer is: Yes and no and maybe no.

 Yes, your Transform has to implement a function for each one specified

in the IMFTransform interface.

 No, if your Transform only supports one input and one output stream

you can just return a HResult.E_NOTIMPL or some other sensible default

value and so the implementation of many of the stream related functions

are not too much trouble.

 Maybe No, you may not have to implement each IMFTransform

interface function at all. If your Transform can just inherit from one of the

Tanta Transform Base classes most of this work will be done for you.

It should be noted that nearly all of the time, the stream configuration group of

functions of the IMFTransform interface will only ever be called during the resolution of

the Topology. Other than that, even though the specification supports the dynamic

addition and removal of streams, it typically never happens.

Since there is only one input and one output stream in Transforms derived from the

Tanta Transform Base classes, most of the functions in the stream configuration group

are handled for you behind the scenes. However, there are some things you do need to

implement. Your code will be expected to handle the GetInputStreamInfo and the

GetOutputStreamInfo function calls in order to provide Transform specific information.

As per the naming convention, this means that you have to override the

OnGetInputStreamInfo and the OnGetOutputStreamInfo functions in the Tanta

Transform Base Classes. It is the job of these functions to provide the Media Session

with information on how the Transform handles the Media Samples. Listed below is a

code section from the MFTTantaVideoRotator_Sync class in the TantaTransformInDLL

Sample Project.

Working With Transforms

262

/// +=

/// <summary>

/// Return settings to describe input stream. This should get the buffer

/// requirements and other information for an input stream.

/// (see IMFTransform::GetInputStreamInfo).

///

/// An override of the abstract version in TantaMFTBase_Sync.

/// </summary>

/// <param name="pStreamInfo">The struct where the parameters get set.</param>

/// <history>

/// 01 Nov 18 Cynic - Ported In

/// </history>

override protected void OnGetInputStreamInfo(ref MFTInputStreamInfo pStreamInfo)

{

 // return the image size

 pStreamInfo.cbSize = m_cbImageSize;

 // MFT_INPUT_STREAM_WHOLE_SAMPLES - Each media sample(IMFSample interface) of

 // input data from the MFT contains complete, unbroken units of data.

 // MFT_INPUT_STREAM_SINGLE_SAMPLE_PER_BUFFER - Each input sample contains

 // exactly one unit of data

 // MFT_INPUT_STREAM_FIXED_SAMPLE_SIZE - All input samples are the same size.

 // MFT_INPUT_STREAM_PROCESSES_IN_PLACE - The MFT can perform in-place processing.

 // In this mode, the MFT directly modifies the input buffer. When the client calls

 // ProcessOutput, the same sample that was delivered to this stream is returned in

 // the output stream that has a matching stream identifier. This flag implies that

 // the MFT holds onto the input buffer, so this flag cannot be combined with the

 // MFT_INPUT_STREAM_DOES_NOT_ADDREF flag. If this flag is present, the MFT must

 // set the MFT_OUTPUT_STREAM_PROVIDES_SAMPLES or MFT_OUTPUT_STREAM_CAN_PROVIDE_SAMPLES

 // flag for the output stream that corresponds to this input stream.

 pStreamInfo.dwFlags = MFTInputStreamInfoFlags.WholeSamples |

 MFTInputStreamInfoFlags.FixedSampleSize |

 MFTInputStreamInfoFlags.SingleSamplePerBuffer |

 MFTInputStreamInfoFlags.ProcessesInPlace;

}}

Source: TantaTransformInDLL::MFTTantaVideoRotator_Sync::OnGetInputStreamInfo

The OnGetInputStreamInfo function returns an MFTInputStreamInfo struct with the

image size and some processing flags. The m_cbImageSize value will have been set

earlier in a call to OnSetInputType which we have not discussed yet. The comments

regarding the flags are pretty self-explanatory, however, the use of the

MFTInputStreamInfoFlags.ProcessesInPlace flag is quite important.

If your Transform returns the ProcessesInPlace flag

when asked for the input stream info then it is saying it

will make changes directly into the Media Buffer the

Media Session provides on input and return that same

buffer when asked for output. If it does not implement

this flag, then the Media Session will expect the

Transform to build and return a new buffer.

The ProcessesInPlace flag fundamentally affects the operation of your Transform. Not

all Transforms need the overhead of creating a new buffer for each Media Sample they

output and the “processing-in-place” mode is much more efficient. This topic is

discussed in more detail in the Processing in the Transform section below.

 Working With Transforms

 263

TRANSFORM STREAMS AND MEDIA TYPES

Every input stream in the Transform has a Media Sub-Type as does every output stream.

Many Transforms can accept and process data in any one of several Media Sub-Types.

As you might imagine there are quite a number of functions on the IMFTransform

interface devoted to the setting, getting and negotiation of the Media Sub-Type on each

stream.

It should be noted, in the unlikely event you were in any doubt, that each Transform

that accepts multiple Media Sub-Types is explicitly coded to be able to process those

media formats. A Transform always “knows” what Media Sub-Types it can deal with

because some programmer somewhere went to a great deal of trouble to make it

happen.

The Media Sub-Type related functions of the IMFTransform interface are a bit more

complex in that they have to support the caller enumerating the various format

possibilities offered by the Transform and then selecting the one it prefers.

There are a variety of reference implementations of the various Media Sub-Type related

functions of the IMFTransform interface available on the Internet and we will not

undertake a detailed discussion of the general case here. So, if you write your own

Transform, do you have to support the negotiation of Media Types on your streams?

Well, the answer is: yes, yes and no and some.

 Yes, your Transform has to implement a function for each one specified

in the IMFTransform interface – no getting away from that.

 Yes, you still have to some support Media Type negotiation even if your

Transform is hardcoded to only use one Media Type. The process of

resolving the Topology will make calls to these functions and they cannot

all return “sorry can’t do it”

 No, in a common case, you don’t really have to implement each

IMFTransform interface function. Your Transform can just inherit from

one of the Tanta Transform Base classes and much of this work will be

done for you.

 Some, if you do inherit from the Tanta Transform base classes you still

have to implement some of the code that negotiates the Media Sub-

Types on the Transform – the base classes cannot hard code support for a

specific Media Type. However, the things you have to write are simple

overrides and much of rest the work is taken care of for you.

Working With Transforms

264

Similar to the discussion in the section above on stream configuration, the Media Type

group of functions on the IMFTransform interface will only ever be called during the

resolution of the Topology. Other than that, even though the interface supports the

dynamic modification of Media Sub-Types, it typically never happens. In other words,

once the Pipeline is up and rolling pretty much nobody is crazy enough to want to

change the media format on a Transform stream even though the standard says the

Transform should support that. Doing so is just asking for trouble.

So if you do configure your Transform to inherit from the Tanta Transform Base classes,

what do you need to do in order to properly support the Media Type negotiation?

Basically there are three functions in this group that you need to concern yourself with.

To be more accurate, there are three functions for the input stream and three for the

output stream, but since the Tanta Transform Base classes require the output Media

Type to be identical to the Media Type on the input stream, you really only need to

worry about the ones relevant to the input.

The three most common functions are: OnCheckInputType, OnEnumInputTypes and

OnSetInputType. Of course there are others, but you will rarely need to override the

base classes handling of them. In the Tanta Transform Samples, the processing in each

function each varies considerably and they can get rather lengthy. Rather than

reproduce each example of the code here, we will just provide a summary of the

behaviors and you can inspect the source yourself. See The Tanta Transform Sample

Projects section above for a more detailed overview of the function of each Transform.

MFTTantaFrameCounter_Sync

OnCheckInputType – will accept any media type.

OnEnumInputTypes – just returns HResult.MF_E_NO_MORE_TYPES.

OnSetInputType – leaves it to the base class to record the input Media

Type.

MFTTantaGrayscale_Sync and MFTTantaGrayScale_Async

OnCheckInputType – Performs a series of checks on the supported list

of Media Types.

OnEnumInputTypes – just returns the Media Type from the supported

list at the specified index.

OnSetInputType – the base class records the input Media Type and the

override extracts a variety of information from the input Media Type

depending on the Media Sub-Type chosen.

 Working With Transforms

 265

MFTTantaWriteText_Sync and MFTTantaVideoRotator_Sync

OnCheckInputType – Performs a series of checks on the single Media

Type it supports

OnEnumInputTypes – just returns the Media Type from the supported

list at the specified index.

OnSetInputType – the base class records the input Media Type and the

override extracts a variety of information from the input Media Type.

OnSetOutputType – if the output Media Type is not already set, this call

makes the output Media Type equal to the Input Media type.

In general the OnCheckInputType and OnEnumInputTypes calls are only used by the

Media Session to figure out a preferred Media type. To support these functions all you

really need to do is provide a list of acceptable Media Sub-Types in the form of an array

of GUIDs. The OnSetInputType function is usually custom written for each Transform.

When the input Media Type is set, the user written override in the Transform usually

takes that opportunity to dig various things like the frame size and interlace mode out of

the Attributes of the incoming Media Type. If the Transform needs this information in

order to later manipulate the media data, it is useful to get it in the OnSetInputType

function and save it in a class variable for later use.

PROCESSING IN THE TRANSFORM

The Media Session controls the transfer of the data to the Transform. It picks the data

up off one component in the Pipeline and gives it to the next object in the branch.

Leaving aside all the complexities the Media Session has around the synchronization of

the movement of the data (the Presentation Clock and all that), from the point of view

of the Transform, the operation is actually pretty simple. It works like this…

1. The Media Session has some data

2. The Media Session asks the Transform if it can accept the data

3. If yes, the Media Session gives the data to the Transform.

4. The Media Session asks the Transform if it has any data

5. If yes, the Media Session gets the data from the Transform.

6. And repeat with the next component in the branch.

Of course, it really is a bit more complex than that as steps 2-3 and 4-5 are both

operating simultaneously in different threads. This is what makes it possible to pull far

more data off an output stream than was input (and vice-versa). However, as a sort of

broad understanding, the above sequence is not too far off.

Working With Transforms

266

As you might imagine, this means that the IMFTransform interface is designed to

support the above types of requests. The four functions on the IMFTransform interface

which assist with the processing of the media data are: GetInputStatus,

ProcessInput, GetOutputStatus, ProcessOutput.

Due to the fact that the Tanta Transform Base classes only permit one output Media

Sample for each input Media Sample, the two functions GetInputStatus and

GetOutputStatus are entirely implemented in the base classes. The Transform will

simply block while it is processing data. This means that if either of those two functions

can execute, the Transform, by definition, is ready to accept a Media Sample if it does

not already have one or return one if it does. The base classes can detect that state and

respond appropriately.

The ProcessInput function is similarly handled by the base classes. It just stores the

incoming Media Sample in a class variable for later processing. You could, of course,

override OnProcessInput in your Transform and implement your own behavior.

It is in the OnProcessOutput function that most of the work happens. By the time this

function gets called, the Media Sample has been given to the Transform in a previous

call to the ProcessInput function. The job of the OnProcessOutput function is to

process the data according to its requirements. For example, the

MFTTantaFrameCounter_Sync Transform just counts the Media Sample and hands it

back, the MFTTantaGrayscale_Sync Transform copies the image to another buffer,

converts it to grayscale and hands that over to the Media Session - it does not perform

in-place processing.

The above discussion is the basic mechanics of how the media data is presented to the

Transform and processed within it. Basically, if you are using the Tanta Transform Base

classes, everything is all done in the OnProcessOutput call and the OnProcessInput call

just provides the sample to the base class.

How then does the data actually get processed? Well, the processing that is done is

highly specific to the work required and the input Media Sub-Type it is operating on.

There is not much point in reproducing the source code from each Tanta Example

Transforms here. The code is extremely lengthy, highly detailed and specific to the

Transform involved. The Raw Data Handling in the Transform section below

summarizes the operation of a representative Tanta example Transform and you can

easily look at the OnProcessOutput call in the others to review how they perform their

operation. Considerable care has been taken to make the comments in those functions

as explanatory as possible.

 Working With Transforms

 267

EVENTS AND MESSAGES

There are two functions related to the sending of events and messages on the

IMFTransform interface. These are ProcessEvent and ProcessMessage. Both of these

functions are handled internally within the Tanta Transform Sync Base class and there is

no way to override this without changing the base class code.

The processing is simple. ProcessEvent function just returns HResult.E_NOTIMPL and

ignores any events that are sent. The ProcessMessage() call just resets the Transform

if a NotifyStartOfStream or CommandFlush message is received and ignores any other

types. The events and message passing mechanism appears not to be very well used (or

necessary) in Synchronous Mode Transforms.

The situation is considerably different in Asynchronous Mode Transforms and the Tanta

Transform Asynchronous Base class necessarily makes extensive use of both events and

messages. Asynchronous Mode Transforms are a pretty advanced concept and will not

be discussed in this book. If you are interested, the MFTTantaGrayscale_Async

Transform in the TantaTransformsDirect Sample Project does demonstrate an

implementation of Asynchronous Transforms though.

RAW DATA HANDLING IN THE TRANSFORM

Ultimately the point of most Transforms is to modify or manipulate the incoming data.

However, it should be noted that there

can be situations such in which the input

data remains unchanged and the content

is just examined.

 There is insufficient space in this

document to discuss the variety of

methods used to process the raw media

data in each of the Tanta Sample

Transforms. We will however cover one

particular case as a reference example

and that, hopefully, will enable you to

better interpret the other samples (and

examples you may find on the Internet).

The Transform we will look at (MFTTantaWriteText_Sync), is designed to overwrite the

video frame with two items of text. The first item of text, a simple string, is opaque and

Figure 9.2: The TantaTransformDirect Application

Working With Transforms

268

the second, the frame count, is a steadily incrementing integer rendered on the display

as a semi-transparent string (see Figure 9.2). The MFTTantaWriteText_Sync Transform

can be seen in operation in the TantaTransformDirect Sample Project. Note that this

Transform only accepts one Media Sub-type of RGB32, but the height and width of the

format can be whatever the sender wishes.

We will join this Transform in the OnProcessOutput() call and the Media Sample object

will have been previously set in the InputSample property by the Media Session in a

previous OnProcessInput() call.

/// +=

/// <summary>

/// This is the routine that performs the transform. Assumes InputSample is set.

///

/// An override of the abstract version in TantaMFTBase_Sync.

/// </summary>

/// <param name="outputSampleDataStruct">The structure to populate with output data.</param>

/// <returns>S_Ok unless error.</returns>

/// <history>

/// 01 Nov 18 Cynic - Ported In

/// </history>

protected override HResult OnProcessOutput(ref MFTOutputDataBuffer outputSampleDataStruct)

{

 HResult hr = HResult.S_OK;

 IMFMediaBuffer outputMediaBuffer = null;

 // we are processing in place, the input sample is the output sample,

 // the media buffer of theinput sample is the media buffer of the output sample.

 try

 {

 // Get the data buffer from the input sample.

 hr = InputSample.ConvertToContiguousBuffer(out outputMediaBuffer);

 if (hr != HResult.S_OK)

 {

 throw new Exception("ConvertToContiguousBuffer failed. Err=" + hr.ToString());

 }

 // now that we have an output buffer, do the work to write text on them.

 WriteTextOnBuffer(outputMediaBuffer);

 // Set status flags.

 outputSampleDataStruct.dwStatus = MFTOutputDataBufferFlags.None;

 // The output sample is the input sample. We get a new IUnknown for the Input

 // sample since we are going to release it below. The client will release this

 // new IUnknown

 outputSampleDataStruct.pSample = Marshal.GetIUnknownForObject(InputSample);

 }

 finally

 {

 // clean up

 SafeRelease(outputMediaBuffer);

 // Release the current input sample so we can get another one.

 // the act of setting it to null releases it because the property

 // is coded that way

 InputSample = null;

 }

 return HResult.S_OK;

}

Source: TantaTransformDirect::MFTTantaWriteText_Sync::OnProcessOutput

This MFTTantaWriteText_Sync Transform uses “in-place” processing. This means that

the Media Buffer of the input sample is the Media Buffer of the output sample. As you

 Working With Transforms

 269

may recall from previous discussions this mode (if enabled) is set as a flag in the

OnGetInputStreamInfo() call. The first action is to get the output Media Buffer.

// Get the data buffer from the input sample.

hr = InputSample.ConvertToContiguousBuffer(out outputMediaBuffer);

It is possible for a Media Sample to contain more than one Media Buffer if it does, the

ConvertToContiguousBuffer() call copies the data from the original buffers into one

new buffer. In typical use, most samples do not contain multiple buffers so the function

does nothing and what we get is what we are really after – an IMFMediaBuffer object

returned in the outputMediaBuffer variable.

We immediately call a function to perform the write of the text on the screen.

// now that we have an output buffer, do the work to write text on them.

WriteTextOnBuffer(outputMediaBuffer);

The WriteTextOnBuffer() function will be discussed below – but for now assume the

operation has happened and let’s look at the return and cleanup in the

OnProcessOutput() call. Since the input Media Sample was modified in-place, simply

assigning the input Media Sample to the output return structure is sufficient.

 // The output sample is the input sample. We get a new IUnknown for the Input

 // sample since we are going to release it below. The client will release this

 // new IUnknown

 outputSampleDataStruct.pSample = Marshal.GetIUnknownForObject(InputSample);

Note that the base class is going to release the InputSample object no matter what we

do (this operation is hard coded into it) and the caller is also going to want to release

this Media Sample. We carefully acquire another reference (the

Marshal.GetIUnknownForObject() wrapper) and pass that back in order to make sure

everything that expects to release the object can do so with no complications. Not doing

this will cause a lot of hard to debug problems and errors in the Pipeline. Once we get

past that, the final steps in the OnProcessOutput() call are pretty standard operations.

// clean up

SafeRelease(outputMediaBuffer);

// Release the current input sample so we can get another one.

// the act of setting it to null releases it because the property

// is coded that way

InputSample = null;

In particular, note that since we obtained the Media Buffer from WMF we have to

release it. The act of setting the InputSample to null will also release it since the

property is hard coded to do that.

Now let’s turn our attention to the operations in the WriteTextOnBuffer function. This

function receives a Media Buffer as a parameter.

Working With Transforms

270

/// +=

/// <summary>

/// Write the text on the output buffer

/// </summary>

/// <param name="outputMediaBuffer">Output buffer</param>

/// <history>

/// 01 Nov 18 Cynic - Ported In

/// </history>

private void WriteTextOnBuffer(IMFMediaBuffer outputMediaBuffer)

{

 IntPtr destRawDataPtr = IntPtr.Zero; //Destination buffer.

 int destStride=0; // Destination stride.

 bool destIs2D = false;

 try

 {

 // Lock the output buffer. Use the IMF2DBuffer interface

 // (if available) as it is faster

 if ((outputMediaBuffer is IMF2DBuffer) == false)

 {

 // not an IMF2DBuffer - get the raw data from the IMFMediaBuffer

 int maxLen =0;

 int currentLen = 0;

 TantaWMFUtils.LockIMFMediaBufferAndGetRawData(outputMediaBuffer,

 out destRawDataPtr, out maxLen, out currentLen);

 // the stride is always this. The Lock function does not return it

 destStride = m_lStrideIfContiguous;

 }

 else

 {

 // we are an IMF2DBuffer, we get the stride here as well

 TantaWMFUtils.LockIMF2DBufferAndGetRawData((outputMediaBuffer as IMF2DBuffer),

 out destRawDataPtr, out destStride);

 destIs2D = true;

 }

 // count this now. We only use this to write it on the screen

 m_FrameCount++;

 // We could eventually offer the ability to write on other formats depending on the

 // current media type. We have this hardcoded to ARGB for now

 WriteImageOfTypeARGB(destRawDataPtr,

 destStride,

 m_imageWidthInPixels,

 m_imageHeightInPixels);

 // Set the data size on the output buffer. It probably is already there

 // since the output buffer is the input buffer

 HResult hr = outputMediaBuffer.SetCurrentLength(m_cbImageSize);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to SetCurrentLength failed. Err=" + hr.ToString());

 }

 }

 finally

 {

 // we MUST unlock

 if(destIs2D == false) TantaWMFUtils.UnLockIMFMediaBuffer(outputMediaBuffer);

 else TantaWMFUtils.UnLockIMF2DBuffer((outputMediaBuffer as IMF2DBuffer));

 }

}

Source: TantaTransformDirect::MFTTantaWriteText_Sync::WriteTextOnBuffer

As you will recall from previous sections, a Media Buffer can be either an

IMFMediaBuffer or an IMF2DBuffer. We need to get access to the raw data (an IntPtr)

and the only way to do that is to Lock() the buffer. The call is slightly different

depending on the buffer type. Let’s take a look at the IMFMediaBuffer case.

int maxLen =0;

int currentLen = 0;

TantaWMFUtils.LockIMFMediaBufferAndGetRawData(outputMediaBuffer,

 out destRawDataPtr, out maxLen, out currentLen);

// the stride is always this. The Lock function does not return it

destStride = m_lStrideIfContiguous;

 Working With Transforms

 271

The main thing we are interested in here is the destRawDataPtr value. The other

variables we will use to process the video frame are all derived from the input Media

Type value originally set in the OnSetInputType() call way back when the Topology was

resolved. The IMF2DBuffer case is similar except that it will return a stride value to us.

WRITING TEXT ON A VIDEO FRAME

Continuing on from the discussion in the previous section, a call to the

WriteImageOfTypeARGB() function is next. This function takes the IntPtr of the data

and the width and height of the frame. These too were set in the OnSetInputType()

call.

WriteImageOfTypeARGB(destRawDataPtr,

 destStride,

 m_imageWidthInPixels,

 m_imageHeightInPixels);

When the WriteImageOfTypeARGB() call returns we have to set the length in the

output Media Buffer – although this step is probably redundant. We are doing in-place

processing, the value is probably already there, and it will not have changed.

// Set the data size on the output buffer.

HResult hr = outputMediaBuffer.SetCurrentLength(m_cbImageSize);

The only remaining operation in the WriteTextOnBuffer function is to perform the

unlock of the Media Buffer.

finally

{

 // we MUST unlock

 if(destIs2D == false) TantaWMFUtils.UnLockIMFMediaBuffer(outputMediaBuffer);

 else TantaWMFUtils.UnLockIMF2DBuffer((outputMediaBuffer as IMF2DBuffer));

}

The unlock of the Media Buffer after you have locked it is

critically important. You must do this.

Also note that the type of unlock call differs depending on whether the Media Buffer

was originally locked as an IMFMediaBuffer or IMF2DBuffer.

Now we get to the heart of the matter – the write of the text on the video frame. It

actually is surprisingly simple because we use a bit of C# trickery. The call to

WriteImageOfTypeARGB performs this operation.

/// +=

/// <summary>

/// Write Text on an ARGB formatted image

/// </summary>

/// <param name="pDest">Pointer to the destination buffer.</param>

/// <param name="lDestStride">Stride of the destination buffer, in bytes.</param>

/// <param name="dwWidthInPixels">Frame width in pixels.</param>

/// <param name="dwHeightInPixels">Frame height, in pixels.</param>

/// <history>

/// 01 Nov 18 Cynic - Ported In

Working With Transforms

272

/// </history>

private void WriteImageOfTypeARGB(

 IntPtr pDest,

 int lDestStride,

 int dwWidthInPixels,

 int dwHeightInPixels

)

{

 // Although the actual data is down in unmanaged memory

 // we do not need to use "unsafe" access to get at it.

 // The new BitMap call does this for us. This is probably

 // only useful in this sort of rare circumstance. Normally

 // you have to copy it about. See the MFTTantaGrayscale_Sync code.

 // The strings to display.

 string sString1 = "Hello!";

 string sString2 = m_FrameCount.ToString();

 // A wrapper around the video data.

 using (Bitmap v = new Bitmap(m_imageWidthInPixels,

 m_imageHeightInPixels, m_lStrideIfContiguous, PixelFormat.Format32bppRgb, pDest))

 {

 using (Graphics g = Graphics.FromImage(v))

 {

 float sLeft;

 float sTop;

 SizeF d;

 // String1 goes right in the middle of the video using

 // the overlay font created earlier

 d = g.MeasureString(sString1, m_fontOverlay);

 sLeft = (m_imageWidthInPixels - d.Width) / 2.0f;

 sTop = (m_imageHeightInPixels - d.Height) / 2.0f;

 g.DrawString(sString1, m_fontOverlay, System.Drawing.Brushes.Red,

 sLeft, sTop, StringFormat.GenericTypographic);

 // Add a frame number in the bottom right using the

 // transparent font created earlier

 d = g.MeasureString(sString2, m_transparentFont);

 sLeft = (m_imageWidthInPixels - d.Width) - 10.0f;

 sTop = (m_imageHeightInPixels - d.Height) - 10.0f;

 g.DrawString(sString2, m_transparentFont, m_transparentBrush,

 sLeft, sTop, StringFormat.GenericTypographic);

 }

 }

 }

Source: TantaTransformDirect::MFTTantaWriteText_Sync::WriteImageOfTypeARGB

There are a couple of time (and code) saving things happening in the above function.

We create a C# bitmap from the incoming IntPtr to the raw data. This incorporates its

own Marshal operation and brings the information nicely up into .NET’s managed

memory space.

using (Bitmap v = new Bitmap(m_imageWidthInPixels,

 m_imageHeightInPixels, m_lStrideIfContiguous, PixelFormat.Format32bppRgb, pDest))

Once we have the data as a bitmap we have a wonderful array of C# tools at our

disposal. For example, we obtain a Graphics object from it.

using (Graphics g = Graphics.FromImage(v))

Now that we have the buffer data in the form of a Graphics object we can draw on it as

if it were any form or control display area. This is very useful since, ultimately as we

write the text, we would prefer not to be fiddling around turning pixels on and off. We

 Working With Transforms

 273

are also going to want to be able select the Typeface and size of the text we write – this

means using fonts.

Font object creation has a certain amount of overhead and since they are re-useable

there is no need to create the fonts each time we process a frame. Accordingly we also

created the fonts during the much earlier call to the OnSetInputType() function. We

will take a bit of a digression to show this creation.

// create the font

m_fontOverlay = new Font(

 "Times New Roman",

 fSize,

 System.Drawing.FontStyle.Bold,

 System.Drawing.GraphicsUnit.Point);

// now the transparent font for the frame count in the

// bottom right hand corner

// scale the font size in some portion to the video image

fSize = 5;

fSize *= (m_imageWidthInPixels / 64.0f);

if (m_transparentFont != null) m_transparentFont.Dispose();

m_transparentFont = new Font(

 "Tahoma",

 fSize,

 System.Drawing.FontStyle.Bold,

 System.Drawing.GraphicsUnit.Point);

Source: TantaTransformDirect::MFTTantaWriteText_Sync::OnSetInputType

In particular, note that the size and other font characteristics (but not the transparency

or color) are set at this time.

Returning to the WriteImageOfTypeARGB function, we can see that the actual write of

the text on the screen is somewhat of an anti-climax.

// String1 goes right in the middle of the video using the overlay font created earlier

d = g.MeasureString(sString1, m_fontOverlay);

sLeft = (m_imageWidthInPixels - d.Width) / 2.0f;

sTop = (m_imageHeightInPixels - d.Height) / 2.0f;

g.DrawString(sString1, m_fontOverlay, System.Drawing.Brushes.Red,

 sLeft, sTop, StringFormat.GenericTypographic);

Besides a bit of math to set the position of the write operation the DrawString()

function of the Graphics object does all the work for us. The draw of the transparent

string is similarly simple – note the use of the transparent font and a transparent brush

created earlier.

// Add a frame number in the bottom right using the transparent font created earlier

d = g.MeasureString(sString2, m_transparentFont);

sLeft = (m_imageWidthInPixels - d.Width) - 10.0f;

sTop = (m_imageHeightInPixels - d.Height) - 10.0f;

g.DrawString(sString2, m_transparentFont, m_transparentBrush, sLeft,

 sTop, StringFormat.GenericTypographic);

Both the bitmap and the graphics object were created with the C# using construct. This

means that they both get properly disposed by the time the function exits.

Working With Transforms

274

It should also be noted that the first string written was hardcoded to a value of “Hello!”.

This value could of course be dynamically set in the Transform using any of the

techniques described in the Passing Information In and Out of a Transform section of

this chapter. The second string, rendered in a transparent font, is just the frame count

of the particular video image on the screen. The OnProcessOutput() call also collects

these.

ADDING TRANSFORMS TO THE PIPELINE

The Topology is a representation (a map) of the way the data will flow from the Media

Sources to the Media Sinks. A Pipeline is the instantiated version of the Topology.

Transforms can be automatically added to a Topology in certain cases. This typically

happens in playback applications where a WMF entity called a Topology Loader will be

invoked to automatically look for and add various decompression and format conversion

Transforms to the Pipeline in order to make it possible to successfully render video and

sound. This automatic Topology resolution mechanism only operates on Pipelines

implementing a renderer sink (the EVR or SAR) and is not available for other

applications, such as saving video to a file on disk. In such cases you, as the programmer,

will have to provide the code to find and include the required Transforms.

It should be noted that the use of the Topology Loader is not exclusive. It is possible to

add your own Transforms to the Pipeline even if the Topology is automatically resolved.

This is demonstrated in the TantaTransformDirect and TantaTransfromInDLLCLient

Sample Projects. In such situations, you can just kind of throw your Transform into the

Topology along with the Media Source and Media Sink, roughly join them all up in the

order you wish and the Topology Loader will figure out what needs to be done in order

to make it all work. More formally, this means that the Topology Loader will examine

the Media Types offered by the source and sinks, the supported Media Types on the

Transforms you added and the conversion and decompression Transforms available on

the system. Once the Topology Loader has an idea of what resources are available, it will

connect everything up, adding new Transforms as necessary, and will make a

functioning Pipeline out of them - if it can (it is not omnipotent).

The Transforms section in The WMF Components chapter of this book has an expanded

discussion of the Topology Loader and we will only consider the general case in the

discussions that follow.

It is often necessary to explicitly specify and manually add Transforms to a Topology. As

you have by now come to expect with WMF, there are a number of equivalent ways to

 Working With Transforms

 275

do this. Fundamentally though, the process of adding a Transform to your Pipeline

divides into two situations: either you have the Transform source code contained within

the C# application you are writing or you have a Transform installed in the system

registry and you have to find and load it via COM and Windows Media Foundation Tools.

If the Transform is located in the registry it may or may not be written in a managed

.NET language - C++ is the typical language for most Transforms. Of course, if the

Transform is directly included in the C# solution (either as class in the application project

or in a separate project entirely) it will have been written in C#.

Actually, though, it does not matter if the Transform you wish to use is written in a

different language. The IMFTransform interface will always behave the same and the

MF.Net library will provide the tools to find and load it into the Pipeline.

It also does not matter if the Transform is Synchronous or Asynchronous and the two

types of Transform can be mixed in a Pipeline. The Media Session will automatically deal

with the different interactions required and you, as the programmer of the application,

need not concern yourself with that issue. Of far more interest as you build the

Topology are the Media Type configuration (both Media Major and Media Sub-Types),

the Media Sources and Media Sinks and the number of streams and branches the

Topology will have to accommodate.

Each section below summarizes a method of creating a Topology Node which represents

a Transform and the final section demonstrates the procedure for connecting that node

into the Topology. To set the stage, in all examples below, the Topology object and the

Media Session will have been created, the Media Source will have been chosen and a

Topology Node created for it. Since the examples are a video playback application and

we are placing our Transform in the video branch of the Pipeline, the EVR video

renderer will be used as the Media Sink. A Topology Node will have been created for the

Media Sink as well. It is useful to keep in mind that all of these configurations are being

applied on the Topology branch associated with the MFMediaType.Video Media Major

Type stream – audio would be handled on a separate branch.

ADDING A TRANSFORM WHEN YOU HAVE THE SOURCE CODE

If you have the source code for the Transform included within the application source,

the procedure for creating a Topology Node for it is simple. All that is necessary is to

compile the Transform object up, instantiate it with the C# new operator and give it to

the topology as a binary via a SetObject() call on a Transform Node. In the code below

the VideoTransform variable holds the Transform object and this is known not to be

null.

Working With Transforms

276

IMFTopologyNode videoTransformNode = null;

// Create a video Tranform

hr = MFExtern.MFCreateTopologyNode(MFTopologyType.TransformNode, out videoTransformNode);

if (hr != HResult.S_OK)

{

 throw new Exception("call to MFCreateTopologyNode failed. Err=" + hr.ToString());

}

if (videoTransformNode == null)

{

 throw new Exception("call to MFCreateTopologyNode(t) failed. videoTransformNode == null");

}

// set the transform object (it is an IMFTransform) as an object

// on the transform node.

hr = videoTransformNode.SetObject(VideoTransform);

if (hr != HResult.S_OK)

{

 throw new Exception("call to videoTransformNode.SetObject failed. Err=" + hr.ToString());

}

Source: TantaTransformDirect::frmMain::PrepareSessionAndTopology

In particular, note that the MFTopologyType.TransformNode parameter was specified

in the call to the static MFCreateTopologyNode() function which creates the Topology

Node. There are four types of Topology Node and if you are creating one for Transforms

you will need to take care to get this right. The Topologies section in The WMF

Components chapter has more details on this topic.

ADDING A TRANSFORM WHEN YOU HAVE AN ACTIVATOR

If you have the activator object for the Transform (perhaps because you enumerated

the available Transforms on the system) you can simply give the Activator to the

Topology by creating a Transform Node and calling SetObject() with the activator

object as a parameter.

IMFTopologyNode pTransformNode = null;

// We have an activator object supplied from some other source

IMFActivator pTransformActivator = <supplied from elsewhere>;

// Create the transform node.

hr = MFExtern.MFCreateTopologyNode(MFTopologyType.TransformNode, out pTransformNode);

if (hr != HResult.S_OK)

{

 throw new Exception("call to MFExtern.MFCreateTopologyNode failed. Err=" + hr.ToString());

}

// set the transform activator on the transform node. The topology will see

// that it is an activator and will create the transform object from it

hr = pTransformNode.SetObject(pTransformActivator);

if (hr != HResult.S_OK)

{

 throw new Exception("call to pTransformNode.SetObject failed. Err=" + hr.ToString());

}

// Add the transform node to the topology.

hr = pTopology.AddNode(pTransformNode);

if (hr != HResult.S_OK)

{

 throw new Exception("call to pTopology.AddNode failed. Err=" + hr.ToString());

}

Source: Not in Tanta Sample Source

 Working With Transforms

 277

The source code is exactly the same as the previous direct mode example code except

that an IMFActivator object is passed in on the SetObject() call instead of an

IMFTransform.

ADDING A TRANSFORM WHEN YOU HAVE A KNOWN GUID

If you know the GUID of a Transform registered on your system you can create a

Transform Node for it and configure it with a call to SetGUID(). The Transform object

will be instantiated when the Topology is resolved.

IMFTopologyNode tmpTransformNode = null;

// Create the transform node.

hr = MFExtern.MFCreateTopologyNode(MFTopologyType.TransformNode, out tmpTransformNode);

if (hr != HResult.S_OK)

{

 throw new Exception("call to MFExtern.MFCreateTopologyNode failed. Err=" + hr.ToString());

}

// set the transform Guid on the transform node. Since this is an attribute we also

// have to tell it what the guid means - hence the MF_TOPONODE_TRANSFORM_OBJECTID as a key

hr = tmpTransformNode.SetGUID(MFAttributesClsid.MF_TOPONODE_TRANSFORM_OBJECTID, transformGuid);

if (hr != HResult.S_OK)

{

 throw new Exception("call to tmpTransformNode.SetGUID failed. Err=" + hr.ToString());

}

// Add the transform node to the topology.

hr = pTopology.AddNode(tmpTransformNode);

if (hr != HResult.S_OK)

{

 throw new Exception("call to pTopology.AddNode failed. Err=" + hr.ToString());

}

// also save the node here

VideoTransformNode = tmpTransformNode;

Source: TantaCommon::ctlTantaEVRFilePlayer::AddBranchToPartialTopology

Note that the Transform GUID supplied to the Transform Node is the value of an

Attribute. This means that we also have to tell it what that particular GUID means. The

MF_TOPONODE_TRANSFORM_OBJECTID value (itself a GUID) is the expected key to use for

this purpose.

ADDING A TRANSFORM BY CREATING IT FROM A GUID

If you know the GUID of a Transform registered on your system. You can also instantiate

it yourself via COM with a call to CoCreateInstance() and then give the object to the

Topology by creating a Topology Node for it and calling SetObject() with the newly

instantiated Transform as the parameter.

/// +=

/// <summary>

/// Gets a transform object from a Guid

///

/// </summary>

/// <param name="transformGuid">the guid of the transform</param>

/// <param name="wantLocalServer">if true use CLSCTX_LOCAL_SERVER otherwise

/// CLSCTX_INPROC_SERVER</param>

/// <returns>the transform object - this must be released</returns>

/// <history>

Working With Transforms

278

/// 01 Nov 18 Cynic - Originally Written

/// </history>

public static IMFTransform GetTransformFromGuid(Guid transformGuid, bool wantLocalServer)

{

 object retInstance = null;

 IMFTransform transformObj = null;

 try

 {

 // set up for INPROC or LOCAL server

 uint serverType = CLSCTX_INPROC_SERVER;

 if (wantLocalServer == true) serverType = CLSCTX_LOCAL_SERVER;

 // call COM and create and instance from the Guid

 UInt32 hResult = CoCreateInstance(transformGuid,

 IntPtr.Zero,

 serverType,

 typeof(IMFTransform).GUID,

 out retInstance);

 if (hResult != 0) return null;

 if (retInstance == null) return null;

 transformObj = (IMFTransform)retInstance;

 }

 catch

 {

 }

 finally

 {

 }

 return transformObj;

}

Source: TantaCommon::TantaWMFUtils::GetTransformFromGuid

Once you have the Transform object, the process of adding it to the Topology is

identical to that in the first example in this section (Adding a Transform When You have

the Source Code) where the Transform was created with the C# new operator. All that is

necessary is to use the SetObject() call on the Transform Node with the instantiated

Transform. Accordingly, the above code shows the much more interesting process of

getting an instantiated Transform from the GUID via a CoCreateInstance() call and

the Adding a Transform When You have the Source Code section can be referred to for

an example of how to add it to the Topology. You can find the GetTransformFromGuid

function in the TantaWMFUtils class of the TantaCommon sample code.

CONNECTING TRANSFORM NODES

In the above sections, a Topology Node representing the Transform was created. This

node will have either the Transform object itself, an Activator for the Transform or a

GUID of the Transform in the registry. We now discuss how the newly created

Transform Nodes can be connected inside the Topology – the procedure is the same no

matter how the Topology Node was created. In the code below, the Topology Node for

the Media Source (sourceVideoNode) and the Topology Node for the Media Sink

(outputSinkNodeVideo) have already been created and added to the Topology.

// Do we have a Transform Node?

if (VideoTransform != null)

{

 // yes we do, inject the transform node into the topology

 // first source node to transform node

 hr = sourceVideoNode.ConnectOutput(0, videoTransformNode, 0);

 Working With Transforms

 279

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to ConnectOutput(t1) failed. Err=" + hr.ToString());

 }

 // now transform node to sink node

 hr = videoTransformNode.ConnectOutput(0, outputSinkNodeVideo, 0);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to ConnectOutput(t2) failed. Err=" + hr.ToString());

 }

}

Source: TantaTransformDirect::frmMain::PrepareSessionAndTopology

In general, the Source Node is connected to the Transform node and the Transform

Node is connected to the Output Node. In reality, the process is just a logical extension

of how the Topology Nodes would be connected in the absence of a Transform Node as

is shown below.

else

{

 // no we do not have a Transform Node, just connect the source to the sink directly

 hr = sourceVideoNode.ConnectOutput(0, outputSinkNodeVideo, 0);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to ConnectOutput failed. Err=" + hr.ToString());

 }

}

Source: TantaTransformDirect::frmMain::PrepareSessionAndTopology

As noted previously, in playback Pipelines, the Topology Loader may well insert other

Transforms in between these nodes in order to make the Media Types used on the

inputs and outputs of each component in the Pipeline work.

MAKING A TRANSFORM AVAILABLE

It is possible to include a Transform directly in your code (see the TantaTransformDirect

Sample Project) - however, this method is not the one typically used. The more common

method of distributing a Transform and making it available is to create it as a separate

standalone entity (a DLL) and configure it in the registry so that other applications can

find and use it.

A globally unique GUID key value created by the implementer of the Transform is used

to specify the Transform in the registry. Any applications which know the GUID key can

then find the Transform and use it. Of course, this presents a bit of a problem to

applications that might need the functionality the Transform provides, but which do not

know the specific GUID value the Transform is registered under. The idea that it could

be very useful to have the ability to find all of the Transforms in the registry by category

and function was not lost on the implementers of Windows Media Foundation. In fact,

there is a special static function in WMF named MFTEnumEx specifically intended for this

purpose and the TantaTransformPicker Sample Project demonstrates its use.

Working With Transforms

280

There are actually two registrations that need to happen in

order to make an MFT both available in the registry and

also discoverable by other WMF applications. The

Transform must first be registered as COM object to make

it available and it can also, optionally, be configured in the

registry to make it discoverable by other WMF

applications.

You do not necessarily need to make the MFT discoverable if the applications which will

use the Transform already know the GUID of the DLL. This is the approach taken in the

TantaTransformInDLL and TantaTransformInDLLClient pair of samples. Having said that,

for demonstration purposes, the TantaTransformInDLL code actually does auto-register

the Transform DLL so that it can be discovered on the system. The

TantaTransformInDLLClient example does not need to perform the discovery operation

since it already knows the GUID to use because that value is hardcoded into it at

compile time.

COM INTEROP DECORATIONS

If a Transform is to be generally available to Windows Media Foundation applications on

a system, it must be compiled as a DLL and that DDL must be registered as a COM

object. In Visual Studio there is nothing particularly special about the structure of the

source code of a Transform used as a DLL. However, there are some options which must

be applied at the project level and some which must be applied to the source code in

order for the DLL to be useable as a Transform.

Besides adhering to the IMFTransform interface (it has to do that), the source code of a

Transform to be used as a DLL should have a number of C# decorations applied to the

class and optionally to some of the functions and properties.

An example of a C# function decoration is shown below…

/// +=

/// <summary>

/// Get the current frame count and prepend a user supplied string. The

/// output is a string in a ref variable.

///

/// Note how this function is ComVisible. This

/// function can be used by a .NET client via Reflection and Late Binding

/// to interact with the transform.

/// </summary>

/// <param name="frameCountLeadingText">the leading text to prepend. Cannot be null</param>

/// <param name="outString">the string with the framecount is returned here</param>

/// <returns>true the operation was successful, false it was not</returns>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

[ComVisible(true)]

public bool FrameCountAsFunctionDemonstrator(string frameCountLeadingText, ref string outString)

 Working With Transforms

 281

{

 // we say the leading text cannot be null

 if (frameCountLeadingText == null)

 {

 outString = "";

 return false;

 }

 // set up the string

 outString = frameCountLeadingText + m_FrameCount.ToString();

 return true;

}

Source: TantaTransformInDLL::MFTTantaVideoRotator_Sync::FrameCountAsFunctionDemonstrator

In the above source code, the [ComVisible(true)] decoration ensures the function is

visible to other applications which have loaded it via COM. It must be noted that this is

only true provided that some other things (discussed below) also happen. Normally only

the functions which will be called by the application using the Transform will need to be

made COM visible.

It should be noted that you will also (in other sources) sometimes see these decorations

referred to as “attributes”. The use of the label “attributes” in this situation does not

refer to Windows Media Foundation Attributes – although there will be plenty of those

in use in a Transform as well. The dual use is a rather unfortunate naming collision - the

meaning of which you have to just figure out from the context. This book will always

refer to C# class and function “attributes” as “decorations” in order to avoid confusion

with WMF Attribute key-value pairs.

The primary thing you need to do in order to make your Transform (or any DLL) source

code suitable for registration in COM Interop is to apply ComVisible and Guid

decorations to the beginning of your class.

/// These class decorations are important. This is the GUID under which the MFT

/// will be registered. If you copy this code you should change this.

/// You should also probably change the class name. This will appear in the

/// registry as well. Use the TantaTransformPicker sample application to view

/// the MFT's in the registry.

[ComVisible(true),

Guid("F1E67619-FB5B-470B-9306-EBF40D54985E"),

ClassInterface(ClassInterfaceType.None)]

public sealed class MFTTantaVideoRotator_Sync : TantaMFTBaseStandalone_Sync

{

 // Format information

 private int m_imageWidthInPixels;

....

Source: TantaTransformInDLL::MFTTantaVideoRotator_Sync

In the above code block, there are three decorations on the

MFTTantaVideoRotator_Sync class. The first, [ComVisible(true)] makes the class

visible when loaded via COM Interop. The second, Guid("F1E67619-FB5B-470B-9306-

EBF40D54985E"), is the unique GUID value by which this Transform will be known in the

registry. The third option, [ClassInterface(ClassInterfaceType.None)], is a

decoration which indicates the type of class interface generated for the class when it is

registered for COM Interop.

Working With Transforms

282

A decoration similar to …

[ComVisible(true),

Guid("F1E67619-FB5B-470B-9306-EBF40D54985E"),

ClassInterface(ClassInterfaceType.None)]

… on your class source code is necessary if your Transform

is to be registered for COM Interop.

You must create a new GUID for your Transform – this is very important. It is also a

good idea to give the Transform a new class name. This class name, among other things,

will appear in the enumeration list if the object is also configured to be discoverable by

other Windows Media Foundation applications.

If you are implementing your own Transform, make sure

to generate a new GUID for it - this is easily done using

the Create GUID option in the Tools Menu of Visual

Studio.

The C# class decorations discussed above just make it possible to register the Transform

for COM Interop – the fact that they exist does not automatically register it. The actual

registration can be performed in one of several ways.

In order to register a Transform for COM Interop you can…

1. You can register the DLL manually through the use of the

Windows RegAsm.exe utility.

2. You can tick the "Register for COM Interop" option on the Build

tab of the properties of your Visual Studio project and it will

auto-register each time you compile.

3. If you wrap the DLL in an installer you can use the tools provided

by that installation package.

REGISTERING A TRANSFORM MANUALLY

Manual registration of a Transform DLL for COM Interop is performed by running the

RegAsm.exe utility on the command line against the assembly DLL. It should be noted

that, in order to update the registry, you will have to start the command line object as

Administrator or the account you use will have to already have such privileges.

 Working With Transforms

 283

The RegAsm utility is a .NET utility (it is not part of the standard Windows distribution)

and so the location of the RegAsm.exe file will vary depending on the .NET version you

are using. You will probably have to look for it.

The actual command line for RegAsm.exe is not complex. The code below will unregister

the MFTTantaVideoRotator_Sync Transform - if it is present. Remember the path to

the RegAsm utility is specific to the .NET version – you will probably need to adjust this.

C:\Windows\Microsoft.NET\Framework\v4.0.30319\regasm

 C:\Projects\Tanta\TantaTransformInDLL\bin\Debug\MFTTantaVideoRotator_Sync.dll /u

Source: TantaTransformInDLL::ManualRegister.txt

Registering the Transform is similarly simple. The code below registers the

MFTTantaVideoRotator_Sync DLL and uses the /tlb and /codebase options. You can

look these options up in the online help to find out what they do.

C:\Windows\Microsoft.NET\Framework\v4.0.30319\regasm

 C:\Projects\Tanta\TantaTransformInDLL\bin\Debug\MFTTantaVideoRotator_Sync.dll

 /tlb:MFTTantaVideoRotator_Sync.tlb /codebase

Source: TantaTransformInDLL::ManualRegister.txt

REGISTERING A TRANSFORM DURING COMPILATION

It is possible to ensure your Transform DLL is automatically registered each time you

compile it. Obviously this is only useful during development - if you were shipping the

Transform assembly as a binary either you, or the end user, would have to use some

other method of registration.

Automatic COM registration at compile time is achieved by ticking the "Register for COM

Interop" option on the Build tab of the properties

of the project. As with the manual registration

option, you will need Administrator privileges in

order to register the DLL. This is why you need to

start the TantaTransformInDLL solution as

Administrator - otherwise you will not have

permission to update the registry. A screenshot of

the "Register for COM Interop" option is shown in

Figure 9.3.

Note that if you untick the "Register for COM Interop" option you will not need to be an

Administrator and you will still get a DLL but it will not be registered for COM.

Figure 9.3: The Build Property of the
TantaTransformInDLL Sample Application

Working With Transforms

284

It should be noted that all Visual Studio is really doing here is calling RegAsm.exe on

your behalf. It has exactly the same effect as a manual registration with RegAsm.exe

using the /tlb and /codebase options.

REGISTERING A TRANSFORM VIA AN INSTALLER APPLICATION

There are many installation applications available and a discussion of them is outside

the scope of this book. The registration of a Transform DLL for COM Interop via this

method will not be discussed here. However, it should be noted that many people frown

on the idea of shipping a DLL without an installer – there is a strong feeling that in order

to provide simple user access and to get a consistent registration (and un-registration) a

DLL should always be wrapped in installation software of some form.

MAKING A TRANSFORM DISCOVERABLE

Previously in the Making a Transform Available section, it was noted that two

registrations must be performed in order to make a Transform available via COM

Interop and also discoverable by other Windows Media Foundation applications. COM

Interop registration has been discussed in the sections above. We will now turn our

attention to the mechanism by which a Transform DLL can be configured in the registry

in order to make it discoverable (or Enumerable – to use the technical term) by other

WMF applications on the system.

In reality, the act of making a Transform assembly DLL Enumerable is also intimately tied

to the use of the RegAsm utility. The designers of the WMF architecture noted that a

Transform is always written for a specific purpose. In other words, any one Transform is

a Decoder, an Encoder, a Video Effect or something else – but never really more than

one thing. Since the purpose of the Transform is always known at compile time by the

developer of the Transform there is no reason not to provide the ability for the

Transform self-register itself for Enumeration. The thinking also went that since any

Transform has to be registered for COM Interop, why not make the self-registration

happen at that time as well? Thus it turns out that, if certain things are appropriately

configured by the developer in the Transform DLL, a Transform can automatically make

itself discoverable by other WMF applications at the same time as it is registered for

COM Interop. Similarly it can make itself un-enumerable when un-registered for COM

Interop.

Theoretically, how might a Transform render itself enumerable? Well, there are two

possible ways – either the RegAsm utility could read some sort of standard information

inside the DLL and configure things on behalf of the DLL or the RegAsm utility can

 Working With Transforms

 285

actually call a function inside the DLL and then the DLL itself can take whatever actions it

needs to in order to configure itself. The designers of the Windows Media Foundation

architecture decided to take the latter path – presumably because that sort of “call-into-

the-dll” functionality already existed as part of COM Interop and they would not have to

implement anything new.

It turns out that if you have a function in the DLL which returns void and accepts one

parameter of type Type and you also decorate that function with the C#

[ComRegisterFunctionAttribute] tag, then the RegAsm utility will execute that

function when it registers the DLL for COM Interop. A similar function, decorated with

the C# [ComUnregisterFunctionAttribute] tag, will be called when the DLL is un-

registered for COM Interop. Note this is true execution – RegAsm brings the DLL into

memory and executes those functions as part of its process. The code in those functions

will be called exactly as if you had opened the DLL in a C# application and directly called

the function. This also means that the contents of those functions will execute with

whatever permissions the RegAsm exe is using – presumably Administrator rights.

System access in these functions is not strictly limited to modifying the registry – it is

entirely possible to manipulate files and perform other actions.

In the Tanta Sample Code and in most other Transforms, the register and un-register

functions are given the standard names of DllRegisterServer and

DllUnregisterServer – but that is just convention, in reality these names could be

anything. The contents of the DllRegisterServer and DllUnregisterServer

functions from the TantaTransformInDLL sample are shown in the code section below. In

particular, note the use of the [ComRegisterFunctionAttribute] and

[ComUnregisterFunctionAttribute] decorations.

/// +=

/// <summary>

/// Set up the function which will be automatically called by COM when this

/// DLL is registered for COM interop. We use this call to register the MFT

/// and make it available for discovery by other MFT applications.

/// </summary>

/// <history>

/// 01 Nov 18 Cynic - Ported In

/// </history>

[ComRegisterFunctionAttribute]

static private void DllRegisterServer(Type t)

{

 HResult hr = MFExtern.MFTRegister(

 t.GUID,

 MFTransformCategory.MFT_CATEGORY_VIDEO_EFFECT,

 t.Name,

 MFT_EnumFlag.SyncMFT,

 0,

 null,

 0,

 null,

 null

);

 MFError.ThrowExceptionForHR(hr);

}

Working With Transforms

286

/// +=

/// <summary>

/// Set up the function which will be automatically called by COM when this

/// DLL is registered for COM interop. We use this call to deregister the MFT

/// and make it unavailable for discovery by other MFT applications.

/// </summary>

/// <history>

/// 01 Nov 18 Cynic - Ported In

/// </history>

[ComUnregisterFunctionAttribute]

static private void DllUnregisterServer(Type t)

{

 HResult hr = MFExtern.MFTUnregister(t.GUID);

}

Source: TantaTransformInDLL::MFTTantaVideoRotator_Sync::DLLRegisterServer

Ultimately, it is the MFTRegister() and MFTUnregister() calls doing the actual work

and these static functions are part of the Windows Media Foundation library. Note how

the GUID, Transform Category and type of Transform (Synchronous and Asynchronous)

are among the items of information passed in on the MFTRegister() call. These

parameters will be associated with the Transform in the registry and can be used by

MFT applications to dynamically sift suitable Transforms from the sometimes rather

lengthy list they enumerate.

Once it is complete, a properly registered Transform should be discoverable by other

MFT applications. You can use the TantaTransformPicker sample application to test this.

If you compile the TantaTransformInDLL Sample Project (remember you have to be

Administrator) you should be able to see the MFTTantaVideoRotator_Sync Transform

listed under the Video Effect category.

Remember there is also an unregister mode as well. If you compile

TantaTransformPicker sample application (as Administrator) the DLLUnregisterServer

function will be called first and, when that returns, only then will the

DLLRegisterServer() call will be made. It should also be noted that successful

registration of the DLL either for COM Interop or for WMF Enumeration does not mean

that the Transform is without errors or even properly coded. Neither process checks to

see if the class being registered even bothers to implement the IMFTransform interface.

LOCAL DISCOVERABILITY

The MFTRegister function in the previous section makes the Transform enumerable to

any application on the system. What about cases in which you want the Transform to

only be “discoverable” by the current process? This is supported, and more on that in a

moment, but first let’s discuss why you might want a Transform to only be visible and

enumerable by the current process.

There are occasions, where you want the Transform discovery process to function

normally but do not wish to make any changes which will affect the operation of other

 Working With Transforms

 287

applications on the system. One example of this is on Windows 7. Windows 7 provides

quite a number of conversion Transforms (codecs) of which, very few are actually

enumerable by default. In other words, your application can use these codecs all it

wishes, but it has to specifically request them. This works well in situations like the

Pipeline Architecture where you can specify a Transform by GUID in order to add it into

the Topology. This can never work in the Reader-Writer Architecture for components

like the Source Reader and Sink Writer which automatically load Transforms behind the

scenes. There is no direct way for your application to influence the Transforms those

components choose to use. All you can do is make sure that the Transforms you wish

them to use are available.

Of course, you will probably not want to make such application specific Transforms

available globally to the entire system – doing so could have completely unknown

effects on other software. The designers of Windows Media Foundation realized this

and have implemented functions called MFTRegisterLocal and

MFTRegisterLocalByCLSID. These two functions work exactly the same as the

MFTRegister function except the Transform they register is only visible to the current

process. In other words, in the current process, the Transform you register locally can be

enumerated and available along with the global ones in a way which is totally

transparent to WMF. Other processes, however, simply will not see your locally

registered Transform.

The sample code below shows the local registration of the Microsoft Supplied

ColorConverterDMO Transform in order to make it available for use to a Sink Writer

object.

// Windows 10, by default, provides an adequate set of codecs which the Sink Writer can

// find to write out the MP4 file. This is not true on Windows 7.

// If we are not on Windows 10 we register (locally) a codec

// the Sink Writer can find and use. The ColorConverterDMO is supplied by

// microsoft it is just not available to enumerate on Win7 etc.

// Making it available locally does not require administrator privs

// but only this process can see it and it disappears when the process

// closes

OperatingSystem os = Environment.OSVersion;

int versionID = ((os.Version.Major * 10) + os.Version.Minor);

if (versionID < 62)

{

 Guid ColorConverterDMOGUID = new Guid("98230571-0087-4204-b020-3282538e57d3");

 // Register the color converter DSP for this process, in the video

 // processor category. This will enable the sink writer to enumerate

 // the color converter when the sink writer attempts to match the

 // media types.

 hr = MFExtern.MFTRegisterLocalByCLSID(

 ColorConverterDMOGUID,

 MFTransformCategory.MFT_CATEGORY_VIDEO_PROCESSOR,

 "",

 MFT_EnumFlag.SyncMFT,

 0,

 null,

 0,

 null

Working With Transforms

288

);

}

Source: TantaCaptureToScreenAndFile::StartRecording::MFTTantaSampleGrabber_Sync

The above operation is not necessary on Windows 10 and so the local registration is

skipped for Windows versions 10 and above. Once the ColorConverterDMO has been

registered locally, it will be available to the Sink Writer like any other registered

Transform.

ENUMERATING THE TRANSFORMS ON THE SYSTEM

The previous section (Making a Transform Available) mentioned that there were really

two problems involved in making a DLL based Transform usable by Windows Media

Foundation Client Applications. Firstly, the Transform has to be made generally available

via the COM system and secondly, the Transform can (optionally) be made

“discoverable” by other WMF objects. If a Transform is not discoverable, then any WMF

Client that wishes to use it must know beforehand the GUID under which the Transform

is registered for COM Interop.

The process of discovering suitable transforms is called Enumeration. The following

sections will document the process of discovering all of the Transforms on the system

and, as a bonus, also show how an application can find out what additional capabilities

those Transforms offer.

THE TANTATRANSFORMPICKER SAMPLE APPLICATION

In the discussion below, the TantaTransformPicker Sample Application will be used to

illustrate the process of

discovering the Transforms

available on a system. For

purposes of demonstration,

the code for the Transform

enumeration operation has

been embedded into a

control in the TantaCommon

library. This has the nice

side effect of making that

functionality available for

re-use by other applications.

Figure 9.4: The TantaTransformPicker Sample Application

 Working With Transforms

 289

The ctlTantaTransformPicker control is designed to be easily placed on the screen in

order to provide a “pick-list” of options and information for the user. That is pretty

much all, besides a bit of supporting code, that the TantaTransformPicker sample

application does. The application does not do anything with a picked Transform besides

displaying the known properties. This is just fine for our purposes in this section, since

we are much more interested in how to obtain this information rather than how to use

it once we do have it.

Before we proceed into the following sections, it should be noted that some of the

details on view in the ctlTantaTransformPicker control display are based on information

located in the registry outside of the Transform DLL. Other information on display is

obtained by temporarily instantiating the DLL and interrogating it. This provides a nice

way of dividing up the discussion and the following sections reflect this.

REGISTRY BASED TRANSFORM INFORMATION

As you might imagine, on any particular system there can be a large number of

Transforms to sift through and so each Transform is associated with a major category

based on function. As we shall see in subsequent sections, the enumeration process also

has the ability to find out the Media Sub-Types the Transform supports on input and

output. This is all designed to assist the WMF Client Application (and Topology Loader)

in making a decision.

The Categories any under which one Transform can be listed are defined by the

MFTransformCategory class in the MF.Net MediaFoundation library. For reference,

these categories are listed in the code section below.

MFT_CATEGORY_VIDEO_DECODER

MFT_CATEGORY_VIDEO_ENCODER

MFT_CATEGORY_VIDEO_EFFECT

MFT_CATEGORY_MULTIPLEXER

MFT_CATEGORY_DEMULTIPLEXER

MFT_CATEGORY_AUDIO_DECODER

MFT_CATEGORY_AUDIO_ENCODER

MFT_CATEGORY_AUDIO_EFFECT

MFT_CATEGORY_VIDEO_PROCESSOR

MFT_CATEGORY_OTHER

Source: MediaFoundation::MFTransformCategory

The ComboBox at the top of the ctlTantaTransformPicker control defines the current

category being enumerated. It can be seen in the previous screenshot of the

TantaTransformPicker sample application, that the MFT_CATEGORY_VIDEO_EFFECT

category is currently selected.

Once a category has been chosen, all Transforms available on the system in that

category are displayed in the ListView below. It can be seen in the previous screenshot

Working With Transforms

290

that there are six Transforms in the MFT_CATEGORY_VIDEO_EFFECT category. Five have

been placed there by other entities and one is the MFTTantaVideoRotator_Sync

Transform output by the TantaTransformInDLL Sample Project. We will briefly reference

the code in that sample application in order to demonstrate how the configuration of

the source code is reflected in the enumeration information on display.

Besides the name, each Transform also has other associated information displayed in

the columns to the right. If the IsSyncMFT column is marked then the Transform is

Synchronous, if the IsAsyncMFT column is flagged then the Transform runs in

Asynchronous Mode. The IsHardware takes care of the special case in which a

Transform is actually a kind of driver mapped onto a physical device. This is often seen

in Transforms that use hardware decoding and encoding based on the capabilities of a

video card. A Transform which is hardware based can also be either Synchronous or

Asynchronous – the two flags are not related. Lastly, the GUID of the Transform is

presented in the Guid column.

All of the previous values such as name, mode (Synchronous or Asynchronous) and the

GUID are stored in the registry when the MFExtern.MFTRegister function is called in

the DLL. The code for this from the MFTTantaVideoRotator_Sync Transform output by

the TantaTransformInDLL sample application is shown below. There is a great deal of

discussion about how this code is activated in the Making a Transform Discoverable

section and so that information will not be reproduced here. Ultimately though, the end

result is that the following code in the Transform is executed to perform the

registration.

/// +=

/// <summary>

/// Set up the function which will be automatically called by COM when this

/// DLL is registered for COM interop. We use this call to register the MFT

/// and make it available for discovery by other MFT applications.

/// </summary>

/// <history>

/// 01 Nov 18 Cynic - Ported In

/// </history>

[ComRegisterFunctionAttribute]

static private void DllRegisterServer(Type t)

{

 HResult hr = MFExtern.MFTRegister(

 t.GUID,

 MFTransformCategory.MFT_CATEGORY_VIDEO_EFFECT,

 t.Name,

 MFT_EnumFlag.SyncMFT,

 0,

 null,

 0,

 null,

 null

);

 MFError.ThrowExceptionForHR(hr);

}

Source: TantaTransformInDLL::MFTTantaVideoRotator_Sync::DLLRegisterServer

 Working With Transforms

 291

The category under which the Transform is listed is entirely derived from the flag in the

second parameter of the MFTRegister() call. In this case it is

MFT_CATEGORY_VIDEO_EFFECT. The mode of the transform is hardcoded in the fourth

parameter as SyncMFT. This makes sense, the mode of operation of a Transform is

inherent in the design of the Transform and it is always known to the implementer. A

Transform does not change from Synchronous to Asynchronous without a great deal of

re-writing of code.

The first and third parameters are the name of the class of the Transform and the GUID

of the Transform. These are derived from the C# Type of the object and this Type is

passed in when the DLL is registered for COM Interop. The name is just the Type Name

of the class of the Transform and the GUID value is actually the class Guid decoration on

that Type. This is reproduced below – in particular observe the way the GUID is

associated with the class. It can also be seen that the name of the class,

MFTTantaVideoRotator_Sync, is the same name on display in the

TantaTransformPicker sample application.

/// These class decorations are important. This is the GUID under which the MFT

/// will be registered. If you copy this code you should change this.

/// You should also probably change the class name. This will appear in the

/// registry as well. Use the TantaTransformPicker sample application to view

/// the MFT's in the registry.

[ComVisible(true),

Guid("F1E67619-FB5B-470B-9306-EBF40D54985E"),

ClassInterface(ClassInterfaceType.None)]

public sealed class MFTTantaVideoRotator_Sync : TantaMFTBaseStandalone_Sync

{

 // Format information

 private int m_imageWidthInPixels;

....

Source: TantaTransformInDLL::MFTTantaVideoRotator_Sync

It is interesting to observe that there is nothing enforcing the content of any of the

parameters on this call. If you, as the programmer, choose to label it with wildly

inappropriate categories, duplicate GUIDs

and erroneous modes of operation there

is nothing to stop you. All that will

happen is that the Transform will not be

properly discoverable by other WMF

Client Applications and may well be

rendered unusable if it is. You could, of

course, also supply your own name and a

GUID from other sources. You don’t have

to use the information derived from the type.

The screenshot of the TantaTransformPicker sample application as shown in Figure 9.5

also contains a panel on the extreme right hand side of the display. This contains

Figure 9.5: The TantaTransformPicker Sample Application

Working With Transforms

292

detailed information on the Input and Output Media Sub-Types of the selected

Transform. This information is supposed to be stored in the registry with the other

details and should be fed into the MFTRegister() call using parameters 7 and 9. As you

can see in the previous code section, the DllRegisterServer() call in the

MFTTantaVideoRotator_Sync Transform does not do this. This is quite common – and

so the ctlTantaTransformPicker control actually interrogates the selected Transform for

the Media Sub-Type information. This is far more reliable since all Transforms, in order

to be useable, must enable a caller to enumerate their input and output Media Sub-

Types. Of course, as we shall see, this requires the Transform to be instantiated (albeit

temporarily) but it does also provide the opportunity to demonstrate that technique.

ENUMERATING THE TRANSFORMS

Fundamentally, enumerating the Transforms is very easy – in theory all you need to do

is make a call to MFExtern.MFTEnumEx() with the appropriate parameters and you will

be returned a list of the Activator objects for each Transform. However, the process is

made more difficult by some odd quirks in the way the MFExtern.MFTEnumEx()

function works. The code below shows the Transform enumeration code from the

DisplayTransformsForCurrentCategory function in the ctlTantaTransformPicker

control.

/// +=

/// <summary>

/// Displays the transforms for the currently selected category.

/// </summary>

/// <history>

/// 01 Nov 18 Cynic - Started

/// </history>

private void DisplayTransformsForCurrentCategory()

{

 IMFSourceReaderAsync tmpSourceReader = null;

 int numResults;

 IMFActivate[] activatorArray;

 List<TantaMFTCapabilityContainer> transformList = new List<TantaMFTCapabilityContainer>();

 HResult hr;

 try

 {

 // clear what we have now

 listViewAvailableTransforms.Clear();

 // reset this

 listViewAvailableTransforms.ListViewItemSorter = null;

 // get the currently selected major category

 TantaGuidNamePair currentCategory =

 (TantaGuidNamePair)comboBoxTransformCategories.SelectedItem;

 if (currentCategory == null) return;

 // we have multiple sub-categories. These are set by specific flags on

 // the MFTEnumX call. We iterate through each flag and get the matching

 // transforms. If we already have it we just set the flag on

 // the exisiting one to show it is in multiple sub-categories

 foreach (MFT_EnumFlag flagVal in Enum.GetValues(typeof(MFT_EnumFlag)))

 {

 // we do not need this one

 if (flagVal == MFT_EnumFlag.None) continue;

 // The documentation states that there is no way to enumerate just

 // local MFTs and nothing else.

 // Setting Flags equal to MFT_ENUM_FLAG_LOCALMFT is equivalent to

 Working With Transforms

 293

 // including the MFT_ENUM_FLAG_SYNCMFT flag

 // which messes us up. This also appears to be true for the

 // FieldOfUse and transcode only flags so we

 // do not include them

 if (flagVal == MFT_EnumFlag.LocalMFT) continue;

 if (flagVal == MFT_EnumFlag.FieldOfUse) continue;

 if (flagVal == MFT_EnumFlag.TranscodeOnly) continue;

 // some of the higher flags are just for sorting the return results

 if (flagVal >= MFT_EnumFlag.All) break;

 hr = MFExtern.MFTEnumEx(currentCategory.GuidValue, flagVal,

 null, null, out activatorArray, out numResults);

 if (hr != HResult.S_OK)

 {

 throw new Exception("call to MFExtern.MFTEnumEx failed. HR=" + hr.ToString());

 }

 // now loop through the returned activators

 for (int i = 0; i < numResults; i++)

 {

 // extract the friendlyName and symbolicLinkName

 Guid outGuid = TantaWMFUtils.GetGuidForKeyFromActivator(

 activatorArray[i], MFAttributesClsid.MFT_TRANSFORM_CLSID_Attribute);

 string friendlyName =

 TantaWMFUtils.GetStringForKeyFromActivator(activatorArray[i],

 MFAttributesClsid.MFT_FRIENDLY_NAME_Attribute);

 // create a new TantaMFTCapabilityContainer for it

 TantaMFTCapabilityContainer workingMFTContainer = new

 TantaMFTCapabilityContainer(friendlyName, outGuid, currentCategory);

 // do we have this in our list yet

 int index = transformList.FindIndex(x => x.TransformGuidValue ==

 workingMFTContainer.TransformGuidValue);

 if (index >= 0)

 {

 // yes, it does contain this transform, just record the new sub-category

 transformList[index].EnumFlags |= flagVal;

 }

 else

 {

 // no, it does not contain this transform yet, set the sub-category

 workingMFTContainer.EnumFlags = flagVal;

 // and add it

 transformList.Add(workingMFTContainer);

 if ((activatorArray[i] is IMFAttributes)==true)

 {

 StringBuilder outSb = null;

 List<string> attributesToIgnore = new List<string>();

 attributesToIgnore.Add("MFT_FRIENDLY_NAME_Attribute");

 attributesToIgnore.Add("MFT_TRANSFORM_CLSID_Attribute");

 attributesToIgnore.Add("MF_TRANSFORM_FLAGS_Attribute");

 attributesToIgnore.Add("MF_TRANSFORM_CATEGORY_Attribute");

 hr = TantaWMFUtils.EnumerateAllAttributesAsText((activatorArray[i] as

 IMFAttributes), attributesToIgnore, 100, out outSb);

 }

 }

 // clean up our activator

 Marshal.ReleaseComObject(activatorArray[i]);

 }

 }

 // now display the transforms

 foreach (TantaMFTCapabilityContainer mftCapability in transformList)

 {

 ListViewItem lvi = new ListViewItem(new[] {

 mftCapability.TransformFriendlyName,

 mftCapability.IsSyncMFT,

 mftCapability.IsAsyncMFT, mftCapability.IsHardware,

 mftCapability.TransformGuidValueAsString});

 lvi.Tag = mftCapability;

 listViewAvailableTransforms.Items.Add(lvi);

 }

 listViewAvailableTransforms.Columns.Add("Name", 250);

 listViewAvailableTransforms.Columns.Add("IsSyncMFT", 70);

 listViewAvailableTransforms.Columns.Add("IsAsyncMFT", 90);

 listViewAvailableTransforms.Columns.Add("IsHardware", 90);

 listViewAvailableTransforms.Columns.Add("Guid", 200);

Working With Transforms

294

 }

 finally

 {

 if (tmpSourceReader != null)

 {

 // close and release

 Marshal.ReleaseComObject(tmpSourceReader);

 tmpSourceReader = null;

 }

 }

}

Source: TantaCommon::ctlTantaTransformPicker::DisplayTransformsForCurrentCategory

The MFExtern.MFTEnumEx() function provides a list of Transforms when given the

current Category and various flags as defined by the MFT_EnumFlag enum. The problem

is that the MFT_EnumFlag enum is a bitwise enum and thus the various flags can be

combined with a C# or operator. This makes it easy for a client application (which may

have a list of features it wants) to specify things. It makes it rather harder for software,

which wants to interrogate the list, to see what flags are on a particular Transform. For

example, a client application could combine the flags of MFT_EnumFlag.AsyncMFT |

MFT_EnumFlag.SyncMFT | MFT_EnumFlag.Hardware if the actual type of Transform

required was not relevant. In that event, a list containing all three types of Transform

would be returned. However, once we have the list, there is no way to interrogate any

one Transform to find out what it is – the Transform does not return this information.

The way we address this situation is to loop through the MFT_EnumFlag enum and only

apply one flag at a time.

foreach (MFT_EnumFlag flagVal in Enum.GetValues(typeof(MFT_EnumFlag)))

{

... more code

hr = MFExtern.MFTEnumEx(currentCategory.GuidValue, flagVal,

 null, null, out activatorArray, out numResults);

... more code

Of course we will probably see the same Transform more than once and so we track the

returned information to a store (called the transformList which is just a C# List of

TantaMFTCapabilityContainer objects).

 // do we have this in our list yet

 int index = transformList.FindIndex(x => x.TransformGuidValue ==

 workingMFTContainer.TransformGuidValue);

 if (index >= 0)

 {

 // yes, it does contain this transform, just record the new sub-category

 ... more code

 }

 else

 {

 // no, it does not contain this transform yet, set the sub-category

 ... more code

Every time we get a Transform we check to see if we have already seen that Transform.

If we have not seen it, we add it to the store in a TantaMFTCapabilityContainer

object. If we have seen the Transform before we simply update the records for the

 Working With Transforms

 295

existing value in the TantaMFTCapabilityContainer of that object in the store. In this

round-about way we can build up a list of all of the flags applicable to any one

Transform for later display.

It should be noted at this time that for some flag options (MFT_EnumFlag.LocalMFT for

example), it is not possible to figure out if they are set using the above mechanism.

Setting this flag is the equivalent of also setting MFT_EnumFlag.SyncMFT and you will

get all Synchronous Transforms in a list - the local ones will be ordered first though.

Accordingly, the sample code just ignores the MFT_EnumFlag values that cannot be

determined.

Note that the enumeration operation does not return to us a list of instantiated

Transform objects. Instead what we get is a list of Activators which could, if you wished,

create the Transform for you. These Activators can tell us certain things about the

Transform such as the GUID it is registered under and the user readable “Friendly

Name”.

... more code

// extract the friendlyName and symbolicLinkName

Guid outGuid = TantaWMFUtils.GetGuidForKeyFromActivator(

 activatorArray[i], MFAttributesClsid.MFT_TRANSFORM_CLSID_Attribute);

string friendlyName =

 TantaWMFUtils.GetStringForKeyFromActivator(activatorArray[i],

 MFAttributesClsid.MFT_FRIENDLY_NAME_Attribute);

... more code

This is useful because it means that we do not necessarily need to instantiate the

Transform to get that information. At this point we are able to populate a nice display

list of the names of all the Transforms and the information we have on them (such as

the GUID and MFT_EnumFlags). Eventually, when the user clicks on a particular

Transform object, we will instantiate the Transform to get further information from it.

This saves us the performance overhead of instantiating every Transform when the user

is not likely to be interested 99% of them.

Activators, however, are COM objects – they are expected to be released and they are

strictly one use items. We could store the Activator object in our

TantaMFTCapabilityContainer object for each Transform and release them when the

program closed. However, if we ever used that Activator to instantiate a Transform, we

could never use it again and the whole list would have to be rebuilt. Instead, the

ctlTantaTransformPicker control just stores the GUID and Friendly Name and

instantiates the Transform from that information if it needs to do so. This also allows us

to demonstrate the technique of creating a Transform if all you have is the GUID.

// clean up our activator

Marshal.ReleaseComObject(activatorArray[i]);

Working With Transforms

296

You will note in the code section above, that each Activator is released with a call to

Marshal.ReleaseComObject(activatorArray[i]) immediately after the GUID and

Friendly Names are obtained from it.

TRANSFORM BASED INFORMATION

If a user clicks on the Friendly Name of the Transform, then more information on that

Transform will be displayed in the right hand panel. These details are mostly the Media

Sub-Types which the Transform is prepared to accept as Input and Output, however, the

names of other Attribute information stored within the Transform is also presented. As

mentioned in the Making a Transform Discoverable section, the Media Sub-Type

information is supposed to be recorded in the Registry and hence available for general

access if you know the GUID. However, many Transforms do not make this information

available at registration time and so interrogating the Transform for it is really the only

reliable mechanism.

The act of clicking on the Friendly Name of the Transform eventually causes the

SetTransformInfoPanel function of the ctlTantaTransformPicker control to be called.

That code is fairly lengthy and is reasonably standard so it will not be reproduced here –

you can easily look it up and review it. The really interesting operations happen in the

static GetInputMediaTypesFromTransformByGuid function of the TantaWMFUtils

class called from within the SetTransformInfoPanel function. This is shown in the

code section below.

/// +=

/// <summary>

/// Gets a list of input Media Types object from a Transform represented

/// by a guid.

///

/// NOTE: the media types returned here must be released

///

/// </summary>

/// <param name="transformGuid">the guid of the transform</param>

/// <param name="wantLocalServer">if true use CLSCTX_LOCAL_SERVER

/// otherwise CLSCTX_INPROC_SERVER</param>

/// <returns>a list of Media Types - these must be released</returns>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

public static List<IMFMediaType> GetInputMediaTypesFromTransformByGuid(

 Guid transformGuid,

 bool wantLocalServer)

{

 IMFTransform transformObj = null;

 IMFMediaType mediaType = null;

 HResult hr;

 List<IMFMediaType> outList = new List<IMFMediaType>();

 try

 {

 // get the transform object

 transformObj = GetTransformFromGuid(transformGuid, wantLocalServer);

 if (transformObj == null) return outList;

 // get all of the media types this transform can handle

 // I do not like endless loops. So we cap this with

 Working With Transforms

 297

 // a hardcoded limit

 for (int typeCounter = 0; typeCounter < MAX_TYPES_TESTED_PER_TRANSFORM; typeCounter++)

 {

 try

 {

 // get the available input type for the current typeCounter

 hr = transformObj.GetInputAvailableType(0, typeCounter, out mediaType);

 // not found, we are done

 if (hr != HResult.S_OK) break;

 if (mediaType == null) break;

 // add it now

 outList.Add(mediaType);

 }

 catch

 {

 } // bottom of try...catch

 } // bottom of for (int typeCounter = 0; ...

 }

 catch

 {

 // do nothing

 }

 finally

 {

 // make sure this is released

 if (transformObj != null)

 {

 // close and release

 if (Marshal.IsComObject(transformObj) ==true)

 Marshal.ReleaseComObject(transformObj);

 transformObj = null;

 }

 }

 return outList;

}

Source: TantaCommon::TantaWMFUtils::GetInputMediaTypesFromTransformByGuid

The first thing the GetInputMediaTypesFromTransformByGuid function needs to do is

to instantiate the Transform. This is done with a call to GetTransformFromGuid()

which takes the GUID value of the Transform as a parameter. The operation of this call

was discussed in the previous Adding a Transform By Creating it from a GUID section

and so that information will not be reproduced here. Suffice it to say that the

GetTransformFromGuid() call returns the instantiated Transform object which, you will

also note, is carefully released in the finally block in the above code section.

Once the Transform has been instantiated, a call to the GetInputAvailableType()

function will return an IMFMediaType object describing the one of the Input media

types supported by the Transform. The GetInputAvailableType() function is itself an

enumerator and we call it repeatedly with an incrementing index in order to get all of

the available types.

// get the available input type for the current typeCounter

hr = transformObj.GetInputAvailableType(0, typeCounter, out mediaType);

It should be stated that we know the GetInputAvailableType() function will be

present in the Transform (and what its behavior will be) because its presence is

mandated as part of the IMFTransform interface which all Transforms must support.

When we call the GetInputAvailableType() function we are talking directly to the

Working With Transforms

298

code of the Transform and the actions of this this can be observed in any of the

Transforms in the Tanta Sample Projects.

The IMFMediaType object returned by the

GetInputMediaTypesFromTransformByGuid() call also needs to be released. You can

see this being done in the SetTransformInfoPanel function after the Media Sub-Type

details have been extracted from it. It cannot be emphasized often enough that objects

returned via COM Interop always need to be released when you are finished with them -

not doing so will generate memory leaks.

In closing, it can be seen that by enumerating the Transforms on the system and then by

instantiating a specific Transform we can interrogate the standard functions of the

IMFTransform interface to find out more information on the Transform. For the

currently selected Transform, the ctlTantaTransformPicker control displays both the

information derived from the registry and the “extra” information derived directly from

the Transform itself in a panel on the right hand side of the display.

PASSING INFORMATION IN AND OUT OF A TRANSFORM

In the majority of cases Transforms are standalone entities. Standalone in the sense that

they know what they need to do and they do not require any exchange of information

from the client application in order to do it. In the TantaTransformDirect sample code,

the MFTTantaGrayscale_Sync and MFTTantaWriteText_Sync Transforms are

examples of this. Sometimes, however, this is not the case and the client either needs

to receive information from the Transform or the Transform needs information from the

client – or both. The MFTTantaFrameCounter_Sync transform in the

TantaTransformDirect Sample application and the MFTTantaVideoRotator_Sync

Transform in the TantaTransformInDLL Sample Project are examples of such

requirements.

The methods which can be used to exchange information between the WMF Client

Application and the Transform depend on the method used to load the Transform into

the Pipeline (Direct or COM) and also on the type of information to be transferred.

Listed below are several methods of client-transform information exchange – there may

well be others so don’t treat these examples as a definitive list.

1. If the Transform is present in the same solution as the client then

the Client Application can just directly call functions and

properties in it.

 Working With Transforms

 299

2. If the Transform was loaded via COM, or directly, information

can be exchanged by setting and/or getting one of the

Transforms Attributes. This can be done in either direction.

3. If the Transform was loaded via COM, or directly, and the

Transform is coded in C#, information can be exchanged via

Reflection and Late Binding.

4. If the Transform was loaded via COM and the Transform is not

coded in C# information can be exchanged via Marshal and other

standard COM methods.

Each of the above methods (except #4) will be discussed below in more detail.

INFORMATION EXCHANGE VIA DIRECT CALLS

This particular method is trivial. If the Transform source code is present in your solution

– either directly in the same project as the client or in a different project within that

solution - then you can just call public functions and properties in that class as you

would any other C# object.

Of course, you have to have the instantiated Transform object which was added to the

Pipeline. This object, however, is fairly simple to record at the time it is added to the

Pipeline – after all it is your code which created the Transform with the C# new operator.

As a reference, this can be seen to be happening in the TantaTransformDirect sample

application when the Transform is added in the EVR Renderer control. The relevant

section of code is reproduced below.

/// +=

/// <summary>

/// Handle a checked changed on the transform radio button

/// </summary>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

private void radioButtonMFTFrameCounter_CheckedChanged(object sender, EventArgs e)

{

 if (radioButtonMFTFrameCounter.Checked == false) return;

 // give it the transform

 MFTTantaFrameCounter_Sync fCounter = new MFTTantaFrameCounter_Sync();

 SetTransformOnEVRControl(fCounter);

}

/// +=

/// <summary>

/// Set the transform on the EVR control. Can only be done when the

/// video is not playing.

/// </summary>

/// <param name="transformObj">the transform object to use, can be null

/// for no transform</param>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

private void SetTransformOnEVRControl(IMFTransform transformObj)

{

 // we only permit this action if we are not playing

 if (ctlTantaEVRFilePlayer1.PlayerState != TantaEVRPlayerStateEnum.Ready)

Working With Transforms

300

 {

 OISMessageBox("A video is currently playing");

 return;

 }

 // give it to the EVR player

 ctlTantaEVRFilePlayer1.VideoTransform = transformObj;

}

Source: TantaTransformDirect::frmMain::SetTransformOnEVRControl

The call to SetTransformOnEVRControl() is activated when the state of the radio

buttons on the screen is changed.

The presence of the actual instantiated object and its source code is used to good effect

when retrieving the FrameCount value from the MFTTantaFrameCounter_Sync

Transform. Although, the call to fetch the frame count is trivial, it will be reproduced

below for completeness.

/// +=

/// <summary>

/// Displays the frame count from the Transform (if it is in use)

/// </summary>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

private void buttonGetFrameCount_Click(object sender, EventArgs e)

{

 // we have to have one

 if(ctlTantaEVRFilePlayer1.VideoTransform==null)

 {

 OISMessageBox("No transform found.");

 return;

 }

 // it has to be the frame counter transform

 if ((ctlTantaEVRFilePlayer1.VideoTransform is MFTTantaFrameCounter_Sync) == false)

 {

 OISMessageBox("The Transform in use is not the Frame Counter.");

 return;

 }

 // just display a dialog box

 OISMessageBox("The current frame count is " +

 (ctlTantaEVRFilePlayer1.VideoTransform as

 MFTTantaFrameCounter_Sync).FrameCount.ToString());

}

Source: TantaTransformDirect::frmMain::buttonGetFrameCount_Click

It is, of course, also possible to set up a C# Delegate and Event mechanism in direct

mode (option 4 in the list above) to trigger a call back from the Transform into the Client

Application.

INFORMATION EXCHANGE VIA ATTRIBUTES

Transforms can have Windows Media Foundation Attributes. In fact, Asynchronous

Transforms require the use of these as part of their configuration mechanism.

Synchronous Transforms do not require the use of Attributes. However, an Attribute

Container (IMFAttributes) can still be set up on a Synchronous Transform and the

Attributes it contains can be used as an information transfer mechanism between the

Client Application and the Transform.

 Working With Transforms

 301

The Attribute Container is set up for you in both of the Transform base classes

(TantaMFTBase_Sync and TantaMFTBase_Async) in the TantaCommon sample library and

also on the standalone Transform base class (TantaMFTBaseStandalone_Sync) used in

the TantaTransformInDLL sample.

In order to explore this topic further, we will look at the usage of the Attribute transfer

mechanism between the transform in the TantaTransformDLL sample code and the

Client Application in the TantaTransformInDLLClient example. The Transform in the

TantaTransformDLL sample code DLL is called MFTTantaVideoRotator_Sync, and its

function is to rotate the video on display through a variety of flips and orientations. The

“RotateFlipType” mode used by the Transform can be changed by the client application

while the video is actually running. Clearly there has to be some way for the client

application to communicate this change to the Transform and, in this example, the

Attribute method is used. Note that this mechanism is used primarily for demonstration

purposes and some of the other methods discussed in this section would also work as

well (and possibly be more efficient).

The Attribute Container object is created and managed by the TantaMFTBase_Sync

base class and most of it is pretty standard. One thing to particularly note is the

mechanism by which the Attribute Container object is returned from within the

Transform.

/// +=

/// <summary>

/// Gets the global attribute store for this Transform

///

/// </summary>

/// <param name="pAttributes">Receives a pointer to the IMFAttributes interface.

/// The caller must release the interface.</param>

/// <returns>S_OK or other for fail</returns>

/// <history>

/// 01 Nov 18 Cynic - Ported In

/// </history>

public HResult GetAttributes(out IMFAttributes pAttributes)

{

 pAttributes = null;

 HResult hr = HResult.S_OK;

 try

 {

 lock (m_TransformLockObject)

 {

 // Using GetUniqueRCW means the caller can do

 // ReleaseComObject without trashing our copy. We *don't*

 // want to return a clone because we *do* want them to be

 // able to change our attributes.

 pAttributes =

 TantaWMFUtils.GetUniqueRCW(m_TransformAttributeCollection) as IMFAttributes;

 }

 }

 catch (Exception e)

 {

 hr = (HResult)Marshal.GetHRForException(e);

 }

 return hr;

}

Source: TantaCommon::TantaMFTBase_Sync::GetAttributes

Working With Transforms

302

The Transform is a COM object and the information it returns is expected to adhere to

the COM standard. This means the caller (the client application in this case) will expect

to release the Attribute Container object. In order to give the caller something to

release via COM, and yet make sure that the object is not garbage collected by the .NET

runtime we create something known as a Runtime Callable Wrapper (RCW). This

effectively wraps the object in some code that can be safely released by the caller. We

do not want to just create a clone of the Attribute Object and hand that over. That

would suffice for passing information out of the Transform to the Client Application, but

any changes made to a cloned object by the Client Application would be lost and hence

unavailable to the Transform. We definitely do not want to just return the Attribute

Object without the RCW. The GetAttributes function is part of the IMFTransform

interface and the obligation of the caller to safely release the returned Attributes object

is mandatory.

The client application (the frmMain class in the TantaTransformInDLLClient sample)

responds to user option changes on the screen by sending the new RotateFlipType

value to the Transform. It does this by retrieving the Attribute Container from the

Transform. Actually it calls the EVR Renderer control for this container because the EVR

Renderer stored the Topology Node of the Transform when it added the Transform to

the Pipeline. Let’s look at the code in the frmMain class first and then we will explore

what is going on in the EVR Renderer control

// this Guid is the key we use to set the FlipMode on the attributes

// of the transform we inserted into the PipeLine. The FlipMode is

// retrieved by the Transform so it also needs to know this Guid.

// Other than that, there is nothing special about this value.

private Guid clsidFlipMode = new Guid("EF5FB03A-23B5-4250-9AA6-0E70907F8B4B");

private void SetFlipModeOnTransform(RotateFlipType flipType)

{

 // get the attribute container from the transform in the EVR player

 IMFAttributes attributeContainer = ctlTantaEVRFilePlayer1.GetTransformAttributes();

 if (attributeContainer == null) return;

 // set the fliptype as an int32. Attributes cannot contain enums

 HResult hr = attributeContainer.SetUINT32(clsidFlipMode, (int)flipType);

 // release it

 System.Runtime.InteropServices.Marshal.ReleaseComObject(attributeContainer);

}

Source: TantaTransformInDLLClient::frmMain::SetFlipModeOnTransform

In the above code, the attributeContainer object is obtained from the

ctlTantaEVRFilePlayer control.

// get the attribute container from the transform in the EVR player

IMFAttributes attributeContainer = ctlTantaEVRFilePlayer1.GetTransformAttributes();

Note, however, that the RotateFlipMode is an Enum. An Attribute is simply a key value

pair where the key is a GUID and the value is a PropVariant (see the About Attributes

and PropVariant sections for more information). A PropVariant cannot contain complex

 Working With Transforms

 303

objects – just simple things like an Int32 or string or Guid). Thus, the code above

converts the RotateFlipMode Enum into an Int32 before storing it in the Attribute.

// release it

System.Runtime.InteropServices.Marshal.ReleaseComObject(attributeContainer);

The Transform is expected to know this has been done and is expected to cast it back

when it retrieves it. Another thing to realize is that the Attribute requires a GUID as a

key. The Transform is also expected to know this GUID value and that it should use it to

access the Attribute information. In particular, note the call to ReleaseComObject() in

the last line.

// set the fliptype as an int32. Attributes cannot contain enums

HResult hr = attributeContainer.SetUINT32(clsidFlipMode, (int)flipType);

If we had not earlier wrapped the attributeContainer object in an RCW we would be

generating a great deal of hard to debug problems here.

The Attribute method of Client/Transform communication

is limited to simple chunks of information which can be

represented as a PropVariant. Also, both and Client and

Transform must know the GUID key value under which this

information is stored.

The EVR Renderer control retrieves the Attribute Container by querying the Transforms

Topology Node. From this it can get the instantiated Transform object itself. It will know

that the Transform Object implements the IMFTransform interface and the

GetAttributes function is a required part of that interface.

/// +=

/// <summary>

/// Gets the attribute container of the current video transform. It

/// does not matter if the Transform was set via the Object or Guid method

///

/// NOTE: the caller MUST release the attribute container

///

/// </summary>

/// <returns>the attribute collection or null for fail</returns>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

public IMFAttributes GetTransformAttributes()

{

 HResult hr;

 object transformObject;

 IMFAttributes attributeContainer = null;

 // this will get populated when we insert a

 // transform of our choice into the video pipeline

 if (VideoTransformNode == null) return null;

 // get the transform object from the node

 hr = VideoTransformNode.GetObject(out transformObject);

 if (hr != HResult.S_OK) return null;

 if (transformObject == null) return null;

 if ((transformObject is IMFTransform)==false) return null;

 // get the attribute container from the transform. If you

 // are using the Tanta base classes this attribute container

Working With Transforms

304

 // will be obtained in such a way so that it is safe for the

 // caller to release it.

 hr = (transformObject as IMFTransform).GetAttributes(out attributeContainer);

 if (hr != HResult.S_OK) return null;

 if (attributeContainer == null) return null;

 // return the attribute container

 return attributeContainer;

}

Source: TantaCommon::ctrlTantaEVRFilePlayer::GetTransformAttributes

It should be noted that the only reason the EVR Renderer control knows about the

Transform Topology Node is because that object was recorded by the control when it

created the Topology and added the Transform to the Pipeline. If you have the Topology

Node of a Transform, getting the Transform object itself is a simple call on the

GetObjectFunction() of the IMFTransform interface.

// get the transform object from the node

hr = VideoTransformNode.GetObject(out transformObject);

Once the required information is stored in the Attribute, the Transform has immediate

access to it. Remember the Attribute Container on which this Attribute is set in the

client application is the same one that the Transform is using – this is how the

information is passed. For completeness, let’s turn to the Transform and see how it

accesses the new RotateFlipType value – this is pretty standard stuff though.

/// +=

/// <summary>

/// Get the FlipMode from this object. It located as an Attribute there. The

/// client knows the topology node when it adds this MFT to the pipeline

/// and so it can get access to the attributes of this class even though

/// it was dynamically created via COM and adjust this attribute to control things.

/// </summary>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

private RotateFlipType FlipMode

{

 get

 {

 IMFAttributes attributeContainer = null;

 // get the attribute container

 HResult hr = this.GetAttributes(out attributeContainer);

 if (hr != HResult.S_OK) return RotateFlipType.RotateNoneFlipNone;

 if (attributeContainer == null) return RotateFlipType.RotateNoneFlipNone;

 // we expect this to be a RotateFlipType enum. However, attributes

 // cannot have enums (just things like strings or ints or doubles

 // so the enum will have been casted to an int32 by the client.

 int enumAsInt = MFExtern.MFGetAttributeUINT32(

 attributeContainer,

 clsidFlipMode,

 (int)RotateFlipType.RotateNoneFlipNone);

 // return the int as an enum

 return (RotateFlipType)enumAsInt;

 }

}

Source: TantaTransformInDLL::MFTTantaVideoRotator_Sync::FlipMode

In particular, notice that the Transform knows the GUID key (clsidFlipMode) under

which to find the current flip mode value. As mentioned previously, this GUID must be

the same as the one used by the caller to store it. It should also be noted how the Int32

 Working With Transforms

 305

of the Attribute value is converted back to a RotateFlipType enum as part of the

return.

It is also interesting to see where the new flip mode data is used - the

TantaTransformInDLL source code can be reviewed for this purpose. As a helpful get-

started hint, notice how each time the MFTTantaVideoRotator_Sync Transform

processes a new frame (ultimately out of the OnProcessOutput() call), it will get the

current RotateFlipType value. This is why the rotation mode can be dynamically

changed while the video is running – the processing for each video frame is independent

of any other.

INFORMATION EXCHANGE VIA REFLECTION AND LATE BINDING

.NET assemblies always present the types and signatures of the public classes, functions

and properties of the objects they define. Much of this information is also publically

available in an instantiated object. Thus if you have an instantiated C# object it is

possible, if you know how, to call functions and properties within it. This is true even if

the source code for that object is unknown and you obtained the object from elsewhere

(perhaps via COM Interop).

The process of calling a function or property in a .NET object for which your program

does not have compile time knowledge of that objects source code is called Late

Binding. The alternative is a call which is hardcoded into the resulting binary at compile

time. The System.Reflection collection of classes provides all the tools needed to

access the public properties and functions of a .NET object and you will see this process

referred to as Reflection and Late Binding or perhaps just Late Binding.

The technique of Late Binding can be used to exchange information with a Transform

which has been written in a .NET language such as C#. As has been discussed previously

(see the Information Exchange Via Attributes section), it is not too difficult to get

access to the Transform object itself even if that object is in an unknown DLL and

originally provided by COM Interop. The problem is that it is not possible, at compile

time, to setup calls into some unknown object which will only later be valid. Instead,

Late Binding must be used to call into the object if the name and signature (return value

and parameters) of the function or property being called is known.

The TantaTransformInDLLClient and the MFTTantaVideoRotator_Sync Transform in

the TantaTransformDLL sample code are designed to demonstrate the concept of

Client-Transform communication via Late Binding. Although the primary purpose of the

MFTTantaVideoRotator_Sync Transform is to demonstrate a dynamically loaded (via

Working With Transforms

306

COM Interop) C# Transform which rotates the video on the screen, that Transform also

counts the frames as they pass through the system. The frmMain class of the
TantaTransformInDLLClient

solution contains a series of buttons

on the screen which, when pressed,

will locate the instantiated
MFTTantaVideoRotator_Sync

Transform object and call various

properties and procedures in it to retrieve or reset the current frame count. Since the

buttons are only there to demonstrate the technique, the frame count information is

just displayed in a pop-up message box and nothing further is done with it.

There are three examples of the Late Binding presented as buttons on the

TantaTransformInDLLClient application main form. The first two (ResetFC and

GetFC(p)) reset the Frame Count (FC) via a property and get the Frame Count via a

property (p). The code behind these operations is simple and can readily be observed in

the buttonResetFrameCount_Click and buttonGetFCViaProperty_Click of the

frmMain class. The code below demonstrates how to call a property in an object if you

know the name of the property and the type that property uses.

private void buttonGetFCViaProperty_Click(object sender, EventArgs e)

{

 LogMessage("buttonGetFCViaProperty_Click called");

 // get the transform

 IMFTransform transformObject = ctlTantaEVRFilePlayer1.GetTransform();

 if (transformObject == null)

 {

 LogMessage("buttonGetFCViaProperty: transformObject == null");

 OISMessageBox("No transform object. Is the video running?");

 return;

 }

 // get the real type of the transform. This assumes it is a .NET

 // based transform - otherwise it will probably just be a generic

 // _ComObject and the code below will fail.

 Type transformObjectType = transformObject.GetType();

 // set up to invoke the FrameCountAsPropertyDemonstrator. Note that

 // we have to know the name of the propery we are calling and the

 // type it takes.

 try

 {

 object frameCount = transformObjectType.InvokeMember(

 "FrameCountAsPropertyDemonstrator",

 BindingFlags.GetProperty,

 null, transformObject, null);

 if ((frameCount is int) == true)

 {

 LogMessage("The frame count is " + frameCount.ToString());

 OISMessageBox("FrameCount=" + frameCount.ToString());

 }

 }

 catch (Exception ex)

 {

 OISMessageBox("An error occured please see the logfile");

 LogMessage(ex.Message);

 LogMessage(ex.StackTrace);

 }

}

Source: TantaTransformInDLLClient::frmMain::buttonGetFCViaProperty_Click

Figure 9.6: A Section of the TantaTransformInDLLClient Main Form

 Working With Transforms

 307

Over in the MFTTantaVideoRotator_Sync Transform object, there is absolutely nothing

distinctive about the FrameCountAsPropertyDemonstrator property – it is just a

standard get/set public property whose value is an int. Note that the

InvokeMember() call is on the Type of the Transform object, not the object itself, and

that the Transform object itself is actually one of the parameters to that call.

Rather more interesting is the FrameCountAsFunctionDemonstrator function of the

MFTTantaVideoRotator_Sync Transform. This function returns a bool and accepts two

strings as parameters - one of which is a ref variable. Since this code is designed for

purposes of demonstration - all it really does is accept the input string, append the

Frame Count to it and then returns the result in the ref variable. This demonstrates a

two way communication mechanism between the client application and the Transform

which can exchange an object of any type.

As with the FrameCountAsPropertyDemonstrator property, there is nothing special

about the FrameCountAsFunctionDemonstrator function. For completeness it will,

however, be reproduced below.

/// +=

/// <summary>

/// Get the current frame count and prepend a user supplied string. The

/// output is a string in a ref variable.

///

/// Note how this function is ComVisible This is not necessary to make it

/// accessible to a .NET client via Reflection and Late Binding

/// to interact with the transform but will make it visible to non-.NET

/// clients via standard COM calls.

/// </summary>

/// <param name="frameCountLeadingText">the leading text to prepend. Cannot be null</param>

/// <param name="outString">the string with the framecount is returned here</param>

/// <returns>true the operation was successful, false it was not</returns>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

[ComVisible(true)]

public bool FrameCountAsFunctionDemonstrator(

 string frameCountLeadingText,

 ref string outString)

{

 // we say the leading text cannot be null

 if (frameCountLeadingText == null)

 {

 outString = "";

 return false;

 }

 // set up the string

 outString = frameCountLeadingText + m_FrameCount.ToString();

 return true;

}

Source: TantaTransformInDLL::MFTTantaVideoRotator_Sync::FrameCountAsFunctionDemonstrator

In the above text the [ComVisible] decoration is not necessary in order to make the

function visible to a C# client via Late Binding. It will, however, make the function visible

via standard COM Interop methods so it is included for thoroughness.

The call to this function in the main form of the Client Application is much more

interesting.

Working With Transforms

308

/// +=

/// <summary>

/// Demonstrates the client/transform communications. Displays the

/// frame count in the rotator transform by calling the a function.

/// The function requires two parameters a leading string and a ref string

/// which is the output. A boolean is returned to indicate success. The

/// frame count is appended to the user supplied leading string.

///

/// This function uses late binding and expects the rotator transform

/// to be instantiated.

/// </summary>

/// <history>

/// 01 Nov 18 Cynic - Originally Written

/// </history>

private void buttonGetFCViaFunction_Click(object sender, EventArgs e)

{

 LogMessage("buttonGetFCViaFunction_Click called");

 // get the transform

 IMFTransform transformObject = ctlTantaEVRFilePlayer1.GetTransform();

 if (transformObject == null)

 {

 LogMessage("buttonGetFCViaFunction: transformObject == null");

 OISMessageBox("No transform object. Is the video running?");

 return;

 }

 // get the real type of the transform. This assumes it is a .NET

 // based transform - otherwise it will probably just be a generic

 // _ComObject and the code below will fail.

 Type transformObjectType = transformObject.GetType();

 // set up our parameters. both are strings, the second is ref string

 object[] parameters = new object[2];

 string outText = "Unknown FrameCount";

 parameters[0] = "I just checked, the frame count is ";

 parameters[1] = outText;

 // set up our parameter modifiers. This is how we tell the InvokeMember

 // call that one of our parameters is a ref

 ParameterModifier paramMods = new ParameterModifier(2);

 paramMods[1] = true;

 ParameterModifier[] paramModifierArray = { paramMods };

 try

 {

 // set up to invoke the FrameCountAsFunctionDemonstrator. Note that

 // we have to know the name of the function we are calling, the return

 // type and its parameter types

 object retVal = transformObjectType.InvokeMember(

 "FrameCountAsFunctionDemonstrator",

 BindingFlags.InvokeMethod,

 null,

 transformObject,

 parameters,

 paramModifierArray,

 null, null);

 if ((retVal is bool) == false)

 {

 LogMessage("call to FrameCountAsFunctionDemonstrator failed.");

 OISMessageBox("call to FrameCountAsFunctionDemonstrator failed.");

 return;

 }

 }

 catch(Exception ex)

 {

 OISMessageBox("An error occured please see the logfile");

 LogMessage(ex.Message);

 LogMessage(ex.StackTrace);

 }

 if (parameters[1] == null)

 {

 LogMessage("buttonGetFCViaFunction_Click: Null value returned for ref parameter.");

 OISMessageBox("Null value returned for ref parameter.");

 return;

 }

 if ((parameters[1] is string) == false)

 {

 LogMessage("buttonGetFCViaFunction_Click: Reference value is not a string");

 Working With Transforms

 309

 OISMessageBox("Reference value is not a string.");

 return;

 }

 LogMessage("buttonGetFCViaFunction_Click: " + (parameters[1] as string));

 OISMessageBox((parameters[1] as string));

}

Source: TantaTransformInDLLClient::frmMain::buttonGetFCViaFunction_Click

Detailed discussions of how a function can be called via Reflection and Late Binding can

be found in any number of online resources and so that content will not be reproduced

here. However we will discuss the major steps in the process.

The instantiated Transform object is retrieved via the

ctlTantaEVRFilePlayer1.GetTransform() call. The Tanta ctrlTantaEVRFilePlayer

control offers this facility and that call will work if the Transform was loaded in direct

mode or via a GUID and COM. Previous sections (Getting The WMF Object From a

Topology Node and Information Exchange Via Attributes) discussed the mechanisms

used to obtain this object and that information will not be reproduced here.

// get the transform

IMFTransform transformObject = ctlTantaEVRFilePlayer1.GetTransform();

Once we have the instantiated object, we can get the C# Type from it. This is done via

the standard GetType() call which is available on every .NET object.

// get the real type of the transform. This assumes it is a .NET

// based transform - otherwise it will probably just be a generic

// _ComObject and the code below will fail.

Type transformObjectType = transformObject.GetType();

The next step is to set up our parameters. Both parameters are strings - the fact that the

second parameter is a ref string does not matter at this point. We use an array of

objects for this purpose.

// set up our parameters. both are strings, the second is ref string

object[] parameters = new object[2];

string outText = "Unknown FrameCount";

parameters[0] = "I just checked, the frame count is ";

parameters[1] = outText;

After the parameters are set up, we configure the parameter modifiers. The only reason

we need these is because the second parameter is a ref value. If there were no ref or

out values we could ignore this step and just pass in a null value for the parameter

modifier array.

// set up our parameter modifiers. This is how we tell the InvokeMember

// call that one of our parameters is a ref

ParameterModifier paramMods = new ParameterModifier(2);

paramMods[1] = true;

ParameterModifier[] paramModifierArray = { paramMods };

At this point we can make the call into the instantiated object and, once it completes,

examine both the return value and the contents of the ref parameter. This is done

through Reflection calling InvokeMember() on the Type object of the Transform.

Working With Transforms

310

// set up to invoke the FrameCountAsFunctionDemonstrator. Note that

// we have to know the name of the function we are calling, the return

// type and its parameter types

object retVal = transformObjectType.InvokeMember(

 "FrameCountAsFunctionDemonstrator",

 BindingFlags.InvokeMethod,

 null,

 transformObject,

 parameters,

 paramModifierArray,

 null, null);

The InvokeMember() call takes as parameters the name of the member being called

("FrameCountAsFunctionDemonstrator"), a flag that indicates a method and not a

property is being called, the instantiated object itself, the parameter array and the

parameter modifiers.

The return value from the InvokeMember() call is always an object but we can cast it to

whatever form we wish. The contents of the parameter array have to be examined to

obtain the value of the output ref parameter. This too is an object – in the above code

section, note the careful Type testing of that parameter value before it is used.

Of course, implicit in the above discussion is the fact that the name and signature of the

method being called is known. Usually you will know this, (just not in a way that can be

used at compile time), otherwise why would you be making the call in the first place?

INFORMATION EXCHANGE VIA COM AND MARSHAL

COM is designed to enable communication between two objects loaded at runtime. If

the C# based Transform was loaded via COM, and the client application is not coded in

C#, information can still be exchanged between the two via Marshal and other standard

COM methods. A discussion of how a non C# client might exchange information with a

C# Transform is beyond the scope of this book and will not be discussed further. If you

need this information, it should be possible to find on-line sources which explain the

process of connecting to a .NET assembly via COM Interop.

 311

Windows Media Foundation:
Getting Started in C#

Chapter 10

CAPTURING CAMERA DATA
One of the many useful things you may wish to do with Windows Media Foundation is

capture video data (and possibly audio data) to a screen or a file. As with most things in

WMF, there are multiple approaches which can be taken. This section will document

two methods, one which uses the Reader-Writer Architecture and a second which uses

a Hybrid Architecture. It is certainly possible to capture video data to a file using a pure

Pipeline Architecture, but there is no specific Tanta Sample Project illustrating that. The

Pipeline part of the TantaCaptureToScreenAndFile Hybrid Architecture demonstrates the

process of capturing video data and rendering it to a screen and the Hybrid part of the

architecture can also save those images to disk using a Sink Writer.

It should also be noted, in the interests of simplicity, that none of the Tanta Sample

Projects capture audio data along with the video – although this feature could certainly

be added to either of the two examples above. See any of the “Video File Copy” Tanta

Sample Projects for insights into how multiple streams can be added to any of the

architectures.

Capturing Camera Data

312

TIMESTAMP REBASING

Before we have a look at the nuts-and-bolts of video data capture, let’s undertake a

brief digression to discuss timestamps. As you will recall from previous sections, Media

Samples are the containers used to transport the media data around the system – no

matter which architecture is in use. Every Media Sample contains a timestamp that

indicates when, relative to the start of play, the sample should be rendered. The Media

Sample also contains a duration which indicates how long the Media Sample should be

rendered for.

Typically, when video devices such as webcams provide Media Samples, the timestamp

they use will probably just be a number indicating the current system date and time

when the frame was composed. File based media data (such as MP4 files) usually expect

the timestamp of the first frame they contain to start at zero and the timestamp of

every subsequent frame to be incremented upwards based on that.

Do you see where we are going with this? If you are capturing data, ideally, the first

Media Sample written to a file should be given a timestamp of 0 and every subsequent

Media Sample should have its timestamp adjusted relative to that. In other words, the

algorithm looks like…

Is this the first Media Sample being written to the file?

if Yes

 save the timestamp of the first Media Sample in a class variable

if No

 do nothing

// adjust the timestamp of all Media Samples

newTimestamp = existingTimestamp-firstMediaTimestamp

Write out the Media Sample with the adjusted timestamp.

This is called Timestamp Rebasing; all Media Samples will be rebased relative to zero -

no matter what value the webcam used to start the sequence.

Timestamp Rebasing seems to have been more of an issue in the past than it is today.

The MP4 File Sink (which is the Media Sink most often used to record video data) now

appears to perform Timestamp Rebasing automatically and the above procedure is

redundant. Both of the Tanta Sample Projects which write webcam data to MP4 files,

implement Timestamp Rebasing for demonstration purposes and then either leave it

commented out or as an option. This does not seem to cause the MP4 File Sink any

problems. It should be noted that the various Tanta Sample Projects which copy media

data from one file to another have no need for Timestamp Rebasing – presumably the

first sample out of the input file already has a timestamp of 0 and so that is what gets

written to the output file.

 Capturing Camera Data

 313

CAPTURE WITH A READER-WRITER ARCHITECTURE

Video capture with the Reader-Writer Architecture is a fairly straightforward process. A

Source Reader is setup to supply the

video data from a webcam and a Sink

Writer is configured to write it to disk

and, as usual, you write a loop to pull

the data off the source and give it to the

sink. The
TantaCaptureToFileViaReaderWriter

demonstrates this method.

Since it is desirable to keep the screen

GUI operational during the capture

process, the Asynchronous Mode

Reader-Writer Architecture was used in

the TantaCaptureToFileViaReaderWriter

Sample Project. In reality, Synchronous Mode could also have been used (and would

have been simpler) if the Media Sample processing loop was just spun up in a separate

C# thread. However, doing so would have eliminated the opportunity to demonstrate

the usage of the Asynchronous Mode Reader-Writer Architecture in a Tanta Sample.

As can be seen in the screen shot above, the TantaCaptureToFileViaReaderWriter

project uses the ctlTantaVideoPicker control from the TantaCommon library to provide

the user with the means to choose the webcam to capture and the format to store. The

output file name is specified at the top of the form and a simple button begins the

capture from that camera.

SETTING THE OUTPUT MEDIA TYPE ON THE SOURCE READER

Let’s join the capture process in the CaptureToFile() function of the frmMain class.

Most of this code is the pretty standard Reader-Writer Architecture set-up and so we

will not reproduce that discussion here. See the Implementing the Reader-Writer

Architecture section of the Practical WMF Architectures chapter for more details.

However the code does get interesting at the point where the output format of the

Source Reader object is configured. As can be seen in the above image, the user has the

option of selecting a specific Media Type and format or having a default one chosen for

it from the available Media Types.

Figure 10.1: The TantaCaptureToFileViaReaderWriter
Sample Project

Capturing Camera Data

314

if (radioButtonUseSpecified.Checked == true)

{

 // we saved the video format container here - this is just the last one that came in

 if ((radioButtonUseSpecified.Tag == null)

 || ((radioButtonUseSpecified.Tag is TantaMFVideoFormatContainer)==false))

 {

 MessageBox.Show("No source video device and format selected. Cannot continue.");

 return;

 }

 // get the container

 TantaMFVideoFormatContainer videoFormatCont =

 (radioButtonUseSpecified.Tag as TantaMFVideoFormatContainer);

 // configure the Source Reader to use this format

 hr = TantaWMFUtils.ConfigureSourceReaderWithVideoFormat(

 workingSourceReader,

 videoFormatCont);

 if (hr != HResult.S_OK)

 {

 // we failed

 MessageBox.Show("Failed on Configure VideoFormat (a), retVal=" + hr.ToString());

 return;

 }

}

else

{

 // prepare a list of subtypes we are prepared to accept from the video source

 // device. These will be tested in order - the first match will be used.

 List<Guid> subTypes = new List<Guid>();

 subTypes.Add(MFMediaType.NV12);

 subTypes.Add(MFMediaType.YUY2);

 subTypes.Add(MFMediaType.UYVY);

 subTypes.Add(MFMediaType.RGB32);

 subTypes.Add(MFMediaType.RGB24);

 subTypes.Add(MFMediaType.IYUV);

 // make sure the default Media Type is one of the above video formats

 hr = TantaWMFUtils.ConfigureSourceAsyncReaderWithVideoFormat (

 workingSourceReader, subTypes, false);

 if (hr != HResult.S_OK)

 {

 // we failed

 MessageBox.Show("Failed on test VideoFormat (b), retVal=" + hr.ToString());

 return;

 }

}

// if we get here we know the source reader now has a configured format but we might not

// know which one it is. So we ask it. It will return a video type

// we will use this later on to configure our sink writer. Note, we have to properly dispose

// of the videoType object after we use it.

hr = workingSourceReader.GetCurrentMediaType(

 TantaWMFUtils.MF_SOURCE_READER_FIRST_VIDEO_STREAM, out videoType);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed on call to GetCurrentMediaType, retVal=" + hr.ToString());

}

Source: TantaCaptureToFileViaReaderWriter::frmMain::CaptureToFile

If the user chooses a specific format we will obtain this information from the

radioButton in a TantaMFVideoFormatContainer.

if (radioButtonUseSpecified.Checked == true)

{

 // we saved the video format container here - this is just the last one that came in

 if ((radioButtonUseSpecified.Tag == null)

 || ((radioButtonUseSpecified.Tag is TantaMFVideoFormatContainer)==false))

... more code

This container does not contain the Media Type object itself – just a variety of

information on the Media Type and format. We pass this into the

 Capturing Camera Data

 315

ConfigureSourceReaderWithVideoFormat static function located in the

TantaWMFUtils class.

// configure the Source Reader to use this format

hr = TantaWMFUtils.ConfigureSourceReaderWithVideoFormat(workingSourceReader, videoFormatCont);

A method of configuring a Source Reader with a specified set of media type details

should probably be documented for you and so it is reproduced below.

public static HResult ConfigureSourceReaderWithVideoFormat(

 IMFSourceReaderAsync sourceReader,

 TantaMFVideoFormatContainer videoFormatContainer)

{

 HResult hr = HResult.S_OK;

 IMFMediaType mediaTypeObj = null;

 // this seems a reasonable maximum

 int maxFormatsToTestFor = 100;

 if (sourceReader == null)

 {

 // we failed

 throw new Exception("Cno reader supplied");

 }

 if (videoFormatContainer == null)

 {

 // we failed

 throw new Exception("no video format container supplied");

 }

 try

 {

 // the code below loops through all media types in the sourceReader.

 // It converts them to a temporary TantaMFVideoFormatContainer. Once

 // we have that we compare it against the input container. If we get

 // a match we set the source reader to use tha media type.

 // loop through a reasonable number of mediaTypes looking for a match

 for (int typeIndex = 0; typeIndex < maxFormatsToTestFor; typeIndex++)

 {

 // get the next media type

 hr = sourceReader.GetNativeMediaType(

 TantaWMFUtils.MF_SOURCE_READER_FIRST_VIDEO_STREAM,

 typeIndex, out mediaTypeObj);

 if (hr == HResult.MF_E_NO_MORE_TYPES)

 {

 // we are all done. The outSb container has been populated

 return HResult.S_OK;

 }

 else if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed GetNativeMediaType, retVal=" + hr.ToString());

 }

 // get a temporary format container from the media type

 TantaMFVideoFormatContainer tmpContainer =

 TantaMediaTypeInfo.GetVideoFormatContainerFromMediaTypeObject(

 mediaTypeObj, videoFormatContainer.VideoDevice);

 if (tmpContainer == null)

 {

 // we failed

 throw new Exception("failed GetVideoFormatContainerFromMediaTypeObject");

 }

 // does this container match the one that was passed in?

 if (videoFormatContainer.CompareTo(tmpContainer) == 0)

 {

 // yes it matches. This is the format that was specified.

 // We can configure with this. Sset the media type on the reader

 hr = sourceReader.SetCurrentMediaType(

 TantaWMFUtils.MF_SOURCE_READER_FIRST_VIDEO_STREAM, null, mediaTypeObj);

 if (hr != HResult.S_OK)

 {

 // we failed

 throw new Exception("failed SetCurrentMediaType, retVal=" + hr.ToString());

Capturing Camera Data

316

 }

 // release the media type

 if(mediaTypeObj!=null)

 {

 Marshal.ReleaseComObject(mediaTypeObj);

 mediaTypeObj = null;

 }

 // we are done

 return HResult.S_OK;

 }

 }

 // if we get here we failed, we could not match the input format

 return HResult.E_FAIL;

 }

 finally

 {

 }

}

Source: TantaCommon::TantaWMFUtils::ConfigureSourceReaderWithVideoFormat

In the above code we are greatly assisted by the fact that the

TantaMFVideoFormatContainer container was created (by the ctlTantaVideoPicker

control) from a list of Media Types the webcam said it supports. We will not discuss

every detail of the above code block – the operation should be fairly clear. All we need

to do is look at each Media Type the Source Reader supports

// loop through a reasonable number of mediaTypes looking for a match

for (int typeIndex = 0; typeIndex < maxFormatsToTestFor; typeIndex++)

{

... more code

For every Media Type we find we create a new TantaMFVideoFormatContainer from it

and compare the two.

TantaMFVideoFormatContainer tmpContainer =

 TantaMediaTypeInfo.GetVideoFormatContainerFromMediaTypeObject(

 mediaTypeObj, videoFormatContainer.VideoDevice);

// does this container match the one that was passed in?

if (videoFormatContainer.CompareTo(tmpContainer) == 0)

... more code

When we find a match we simply set it “current” on the stream as shown below.

// yes it matches. This is the format that was specified.

// We can configure with this. Set the media type on the reader

hr = sourceReader.SetCurrentMediaType(

 TantaWMFUtils.MF_SOURCE_READER_FIRST_VIDEO_STREAM, null, mediaTypeObj);

... more code

Once the above code completes, we have chosen the output format of the Source

Reader object. It should be noted that we are using the

MF_SOURCE_READER_FIRST_VIDEO_STREAM constant and are only considering the first

video stream the Source Reader offers. This may not be desirable - some Webcams offer

more than one stream. For example, the Logitech C920 webcam offers a second

(disabled by default) stream containing H.264 compressed video streams. The above

code would totally ignore that.

 Capturing Camera Data

 317

Returning to the CaptureFile() function we turn our attention to the sequence of

operations which unfold when the user simply choses to use the default Media Type the

webcam provides. In this case we decide (for demonstration purposes) that only a few

Media Sub-Types will be acceptable and we test to see if the default Media Type

matches any one of that supplied list. If the default Media Type on the stream does not

match any of the types on the list, then we throw an error. Here is the setup in the

CaptureFile() function just before the test happens.

// prepare a list of subtypes we are prepared to accept from the video source

// device. These will be tested in order - the first match will be used.

List<Guid> subTypes = new List<Guid>();

subTypes.Add(MFMediaType.NV12);

subTypes.Add(MFMediaType.YUY2);

subTypes.Add(MFMediaType.UYVY);

subTypes.Add(MFMediaType.RGB32);

subTypes.Add(MFMediaType.RGB24);

subTypes.Add(MFMediaType.IYUV);

// make sure the default Media Type is one of the above video formats

hr = TantaWMFUtils. ConfigureSourceAsyncReaderWithVideoFormat(

 workingSourceReader, subTypes, false);

... more code

The checking is also done with a call to a

ConfigureSourceAsyncReaderWithVideoFormat static function (it uses different

parameters than the previous one) located in the TantaWMFUtils. In the interests of

space we will not reproduce all of the details of this function – just the interesting bits.

hr = sourceReader.GetNativeMediaType(

 TantaWMFUtils.MF_SOURCE_READER_FIRST_VIDEO_STREAM, 0, out mediaTypeObj);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("failed on call to GetNativeMediaType, retVal=" + hr.ToString());

}

// Get the GUID value associated with a MF_MT_SUBTYPE key.

hr = mediaTypeObj.GetGUID(MFAttributesClsid.MF_MT_SUBTYPE, out subtype);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("failed on call to mediaTypeObj.GetGUID, retVal=" + hr.ToString());

}

// now loop through and check, does this match any of the ones we want?

foreach (Guid guidValue in subTypes)

{

 if (subtype == guidValue)

 {

 // set the media type on the reader

 hr = sourceReader.SetCurrentMediaType(

 TantaWMFUtils.MF_SOURCE_READER_FIRST_VIDEO_STREAM, null, mediaTypeObj);

 // flag it

 matchedNativeType = true;

 break;

 }

}

if (matchedNativeType == false)

{

 // if we get here we failed

 return HResult.E_FAIL;

}

return HResult.S_OK;

Source: TantaCommon::TantaWMFUtils::TestSourceReaderStreamUsesFormat

Capturing Camera Data

318

Each item in the list is the GUID of a Media Sub-type. We get the native Media Type

from the Source Reader and extract its Media Sub-Type as a GUID.

hr = sourceReader.GetNativeMediaType(

 TantaWMFUtils.MF_SOURCE_READER_FIRST_VIDEO_STREAM, 0, out mediaTypeObj);

// Get the GUID value associated with a MF_MT_SUBTYPE key.

hr = mediaTypeObj.GetGUID(MFAttributesClsid.MF_MT_SUBTYPE, out subtype);

... more code

Once we have that it is a simple matter to check for a match against our list and then set

the current Media Type on the Source Reader with a call to SetCurrentMediaType().

hr = sourceReader.SetCurrentMediaType(

 TantaWMFUtils.MF_SOURCE_READER_FIRST_VIDEO_STREAM, null, mediaTypeObj);

... more code

As before, once the above code completes we have chosen the output format of the

Source Reader object. It should be noted that here too we are using the

MF_SOURCE_READER_FIRST_VIDEO_STREAM constant and are only considering the first

video stream the Source Reader offers.

It should also be mentioned that, since we might not explicitly know the Media Type

that has been set, we simply ask the Source reader for it again in the CaptureFile()

function. This is done with the statement below

// if we get here we know the source reader now has a configured format but we might not

// know which one it is. So we ask it. It will return a video type

// we will use this later on to configure our sink writer. Note, we have to properly dispose

// of the videoType object after we use it.

hr = workingSourceReader.GetCurrentMediaType(

 TantaWMFUtils.MF_SOURCE_READER_FIRST_VIDEO_STREAM, out videoType);

CONFIGURING AN MP4 SINK WRITER

Proceeding on down the CaptureFile() function in the frmMain class of the

TantaCaptureToFileViaReaderWriter Sample Project, the next step is to properly

configure the Media Type the Sink Writer will write to disk. We are explicitly specifying

the output format here and the code below provides a nice example of a Media Type

being created from scratch. Well, mostly from scratch – some parts, such as the frame

size and interlace mode, are obtained from the output Media Type of the source

stream. We definitely do not want to change those things. This code section will run a

bit long – but you should probably have an example of how this kind of Media Type

object build is done somewhere in this book.

// now we configure the encoder. This sets up the sink writer so that it knows what format

// the output data should be written in. The format we give the writer does not

// need to be the same as the format it outputs to disk - however to make life

// easier for ourselves we will copy a lot of the settings from the videoType retrieved above

// create a new empty media type for us to populate

hr = MFExtern.MFCreateMediaType(out encoderType);

 Capturing Camera Data

 319

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed on call to MFCreateMediaType, retVal=" + hr.ToString());

}

// The major type defines the overall category of the media data. Major types

// include video, audio, script & etc.

hr = encoderType.SetGUID(MFAttributesClsid.MF_MT_MAJOR_TYPE, MFMediaType.Video);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed setting the MF_MT_MAJOR_TYPE, retVal=" + hr.ToString());

}

// The subtype GUID defines a specific media format type within a major type.

// For example, within video, the subtypes include MFMediaType.H264 (MP4),

// MFMediaType.WMV3 (WMV), MJPEG & etc. Within audio, the

// subtypes include PCM audio, Windows Media Audio 9, & etc.

hr = encoderType.SetGUID(MFAttributesClsid.MF_MT_SUBTYPE, MEDIA_TYPETO_WRITE);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed setting the MF_MT_SUBTYPE, retVal=" + hr.ToString());

}

// this is the approximate data rate of the video stream, in bits per second,

// for a video media type in the MF.Net sample code this is 240000 but I

// found 2000000 to be much better. I am not sure,

// at this time, how this value is derived or what the tradeoffs are.

hr = encoderType.SetUINT32(MFAttributesClsid.MF_MT_AVG_BITRATE, TARGET_BIT_RATE);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed setting the MF_MT_AVG_BITRATE, retVal=" + hr.ToString());

}

// populate our new encoding type with the frame size of the videoType selected earlier

hr = TantaWMFUtils.CopyAttributeData(videoType, encoderType,

 MFAttributesClsid.MF_MT_FRAME_SIZE);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed copying the MF_MT_FRAME_SIZE, retVal=" + hr.ToString());

}

// populate our new encoding type with the frame rate of the video type selected earlier

hr = TantaWMFUtils.CopyAttributeData(videoType, encoderType,

 MFAttributesClsid.MF_MT_FRAME_RATE);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed copying the MF_MT_FRAME_RATE, retVal=" + hr.ToString());

}

// populate our new encoding type with the pixel aspect ratio of

// the video type selected earlier

hr = TantaWMFUtils.CopyAttributeData(videoType, encoderType,

 MFAttributesClsid.MF_MT_PIXEL_ASPECT_RATIO);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed MF_MT_PIXEL_ASPECT_RATIO, retVal=" + hr.ToString());

}

// populate our new encoding type with the interlace mode of the video type selected earlier

hr = TantaWMFUtils.CopyAttributeData(videoType, encoderType,

 MFAttributesClsid.MF_MT_INTERLACE_MODE);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed copying the MF_MT_INTERLACE_MODE, retVal=" + hr.ToString());

}

// add a stream to the sink writer. The encoderType specifies the format

// of the samples that will be written to the file. Note that it does not necessarily need to

// match the input format.

int sink_stream = 0;

hr = workingSinkWriter.AddStream(encoderType, out sink_stream);

if (hr != HResult.S_OK)

{

Capturing Camera Data

320

 // we failed

 throw new Exception("Failed adding the output stream, retVal=" + hr.ToString());

}

Source: TantaCaptureToFileViaReaderWriter::frmMain::CaptureToFile

The code in the above section can be basically be broken down in to three parts: the

creation of the Media Type Object, the population of the Media Type object with new

items and the population of the Media Type Object with media information derived

from the output Media Type of the Source Reader. Let’s take each one in turn.

The Media Type is easily created with a call to the MFCreateMediaType static function.

// create a new empty media type for us to populate

hr = MFExtern.MFCreateMediaType(out encoderType);

We set the Media Major Type, the Media Sub-Type and the Target Bit Rate in the output

media type.

// The major type is video

hr = encoderType.SetGUID(MFAttributesClsid.MF_MT_MAJOR_TYPE, MFMediaType.Video);

// The subtype GUID defines a specific media format type within a major type.

hr = encoderType.SetGUID(MFAttributesClsid.MF_MT_SUBTYPE, MEDIA_TYPETO_WRITE);

// this is the approximate data rate of the video stream, in bits per second

hr = encoderType.SetUINT32(MFAttributesClsid.MF_MT_AVG_BITRATE, TARGET_BIT_RATE);

The MEDIA_TYPETO_WRITE value is a constant which is equal to MFMediaType.H264 in

this application. The H.264 format (which you can find out about online) is a nice,

standard, compressed format for MP4 files. You will note that the Media Sub-Type of

the samples being output by the Source Reader is almost certainly not H.264 and so

some converting will have to be done. As we will shortly see, the Sink Writer will handle

all of this sort of thing for us.

We copy very specialized things like the frame size, frame rate, interlace mode and pixel

aspect ratio from the Source Readers Media Type. There is, unless we really want to do

some serious converting, no need to change these in the resulting MP4 file.

// populate our new encoding type with the frame size of the videoType selected earlier

hr = TantaWMFUtils.CopyAttributeData(videoType, encoderType,

 MFAttributesClsid.MF_MT_FRAME_SIZE);

// populate our new encoding type with the frame rate of the video type selected earlier

hr = TantaWMFUtils.CopyAttributeData(videoType, encoderType,

 MFAttributesClsid.MF_MT_FRAME_RATE);

// populate our new encoding type with the pixel aspect ratio of

// the video type selected earlier

hr = TantaWMFUtils.CopyAttributeData(videoType, encoderType,

 MFAttributesClsid.MF_MT_PIXEL_ASPECT_RATIO);

// populate our new encoding type with the interlace mode of the video type selected earlier

hr = TantaWMFUtils.CopyAttributeData(videoType, encoderType,

 MFAttributesClsid.MF_MT_INTERLACE_MODE);

if (hr != HResult.S_OK)

There are likely to be a lot more Attributes in the Source Reader Media Type that we

could copy across but the ones specified above seem to do the job. It should be noted

 Capturing Camera Data

 321

that there is an alternate way this procedure could be done. The IMFMediaType

interface does contain a CopyAllItems() function and this is wrapped up nicely in the

CloneMediaType() function of the TantaWMFUtils class. We could have just cloned the

Source Reader Media Type and replaced the Media Sub-Type and Frame Rate Attributes

in the cloned value.

Once we have the new Media Type built, we tell the Sink Writer to use it as an output.

This is done as part of the act of the output stream.

// add a stream to the sink writer. The encoderType specifies the format

// of the samples that will be written to the file. Note that it does not necessarily need to

// match the input format.

int sink_stream = 0;

hr = workingSinkWriter.AddStream(encoderType, out sink_stream);

Note that we carefully record the ID of the output stream in the above call – we will

need it in the next step.

At this point the Sink Writer has an output stream and that stream has a specified Media

Type. We now have to tell the Sink Writer the format of the data it will be receiving on

that stream. The Media Type of output by the Source Reader (the videoType variable) is

used for this purpose.

// Set the input format for a stream on the sink writer.

hr = workingSinkWriter.SetInputMediaType(sink_stream, videoType, null);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed SetInputMediaType on the writer, retVal=" + hr.ToString());

}

Source: TantaCaptureToFileViaReaderWriter::frmMain::CaptureToFile

Clearly the input Media Type on the Sink Writers stream is not identical to that being

written to the file. The Sink Writer will automatically invoke a conversion Transform to

make the appropriate changes. This is all automatic and is probably the primary reason

people like the Sink Writer so much.

The last steps in the CaptureToFile() function initialize the Sink Writer and request

the first sample from the Source Reader

// now we initialize the sink writer for writing.

hr = workingSinkWriter.BeginWriting();

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed BeginWriting on the writer, retVal=" + hr.ToString());

}

// Request the first video frame from the media source. The TantaSourceReaderCallbackHandler

// set up earlier will be invoked and it will continue requesting and processing video

// frames after that.

hr = workingSourceReader.ReadSample(

 TantaWMFUtils.MF_SOURCE_READER_FIRST_VIDEO_STREAM,

 0,

 IntPtr.Zero,

 IntPtr.Zero,

 IntPtr.Zero,

Capturing Camera Data

322

 IntPtr.Zero

);

if (hr != HResult.S_OK)

{

 // we failed

 throw new Exception("Failed first ReadSample on the reader, retVal=" + hr.ToString());

}

Source: TantaCaptureToFileViaReaderWriter::frmMain::CaptureToFile

You have seen the BeginWriting() command before in other chapters – it just

initializes the Sink Writer and opens the output file. The first ReadSample() call has also

been discussed. Since the Source Reader in this example is operating in Asynchronous

Mode, this call will trigger a Media Sample to be sent to the OnReadSample() function

in the Source Readers Callback Object. Once the first Media Sample arrives, the read

process will be self-sustaining in a separate thread. The Media Samples will be read

from the Source Reader (the webcam) and written to the Sink Writer (the MP4 file) until

the user stops the process. See The Asynchronous Reader-Writer Architecture section

in the Practical WMF Architectures chapter for an extensive discussion of this process.

CAPTURE WITH A HYBRID ARCHITECTURE

The act of capturing data with a Hybrid Architecture implies that you have a Pipeline

and that some object in that Pipeline is intercepting the Media Samples they pass

through. In a capture application, copies of the intercepted Media Samples are then

handed off to a Sink Writer while the Pipeline proceeds to render the video data.

The TantaCaptureToScreenAndFile Sample Project demonstrates the display and capture

process. The application displays the stream of images from a webcam on a screen and

also, optionally, allows the user to activate a “save to disk” operation which

simultaneously records the video data on display to a file.

The capture process in TantaCaptureToScreenAndFile Sample Project is performed by

introducing a special Transform into the Pipeline. The Transform, named

MFTTantaSampleGrabber_Sync operates in an in-place Synchronous Mode Transform

that makes no changes to the data as it passes through. The OnProcessOutput() simply

hands the Media Sample off to a previously configured Sink Writer (it will only make a

copy if it is rebasing the timestamp). When that call returns, the Transform gives the

Media Sample back to the Media Session. Essentially, the

MFTTantaSampleGrabber_Sync is just the example Frame Counter Transform with a

few added extras so that the client can communicate with it to enable and disable the

write of the Media Sample. Other than the addition of the

MFTTantaSampleGrabber_Sync Transform (and that in itself is a pretty standard

process for you by now), there is nothing at all unusual about the Pipeline in this

 Capturing Camera Data

 323

application. It is just a Pipeline from a webcam to an EVR Renderer which has a

Transform in the video stream.

The StartRecording() function in the MFTTantaSampleGrabber_Sync Transform is

called by the application out of a button press event. All it does is set up a Sink Writer in

exactly the same way as you previously saw in the Configuring an MP4 Sink Writer

section during the discussion of the Capture with a Reader-Writer Architecture

operation. We will not duplicate that code here – its operation has already been

extensively discussed. It should be noted that the presence or absence of a Sink Writer

object in the Transform is the only thing that enables or disables the write to disk. If the

Sink Writer object exists the Media Sample is given to it, if not the Transform just

returns it as normal. The creation of the Sink Writer and the write to the Sink Writer

necessarily happen in different threads so a standard C# lock is obtained to make sure

the Sink Writer object does not disappear while the OnProcessOutput() function is

using it.

The code in the OnProcessOutput() function is also quite simple and is reproduced

below.

/// +=

/// <summary>

/// This is the routine that performs the transform. Unless the sinkWriter object

/// is set all we do is pass the sample on. If the sink writer object is set

/// we give the sample to it for writing. There are two modes - one where we just

/// give the sinkwriter the input sample and the other where we clone the input

/// sample and rebase the timestamps.

///

/// An override of the abstract version in TantaMFTBase_Sync.

/// </summary>

/// <param name="pOutputSamples">The structure to populate with output values.</param>

/// <returns>S_Ok unless error.</returns>

/// <history>

/// 01 Nov 18 Cynic - Originally written

/// </history>

protected override HResult OnProcessOutput(ref MFTOutputDataBuffer outputSampleDataStruct)

{

 HResult hr = HResult.S_OK;

 IMFMediaBuffer inputMediaBuffer = null;

 IMFSample sinkWriterSample = null;

 IMFAttributes sampleAttributes = null;

 long sampleDuration = 0;

 int sampleSize = 0;

 long sampleTimeStamp = 0;

 int sampleFlags = 0;

 // in this MFT we are processing in place, the input sample is the output sample,

 // the media buffer of the input sample is the media buffer of the output sample.

 // Thats for the pipeline. If a sink writer exists we also write the sample data

 // out to the sink writer. This provides the effect of displaying on the

 // screen and simultaneously recording.

 // There are two ways the sink writer can be given the media sample data. It can

 // just be given the input sample directly or a copy of the sample can be made

 // and that copy given to the sink writer.

 // There is also an additional complication - the sample has a timestamp and

 // video cameras tend to just use the current date and time as a timestamp.

 // There are several reports that MP4 files need to have their first frame

 // starting at zero and then every subsequent frame adjusted to that

 // new base time. Certainly the Microsoft supplied example code (and see the

 // TantaCaptureToFileViaReaderWriter also) take great care to do this. This

 // requirement does not seem to exist - my tests indicate it is not necessary

Capturing Camera Data

324

 // to start from 0 in the MP4 file. Maybe the Sink Writer has been improved

 // and now does this automatically. For demonstration purposes the timebase-rebase

 // functionality has been included and choosing that mode copies the sample

 // and resets the time. If the user does not rebase the time we simply

 // send the input sample to the Sink Writer as-is.

 try

 {

 // Set status flags.

 outputSampleDataStruct.dwStatus = MFTOutputDataBufferFlags.None;

 // The output sample is the input sample. We get a new IUnknown for the Input

 // sample since we are going to release it below. The client will release this

 // new IUnknown

 outputSampleDataStruct.pSample = Marshal.GetIUnknownForObject(InputSample);

 // are we recording?

 if (workingSinkWriter != null)

 {

 // we do everything in a lock

 lock (sinkWriterLockObject)

 {

 // are we in timebase rebase mode?

 if (wantTimebaseRebase == false)

 {

 // we are not. Just give the input sample to the Sink Writer which will

 // write it out.

 hr = workingSinkWriter.WriteSample(sinkWriterVideoStreamId, InputSample);

 if (hr != HResult.S_OK)

 {

 throw new Exception("WriteSample(a) failed. Err=" + hr.ToString());

 }

 }

 else

 {

 // the timebase rebase option has been chosen. We need to

 // create a copy of the input sample so we can adjust the time on it.

 // Get the data buffer from the input sample.

 hr = InputSample.ConvertToContiguousBuffer(out inputMediaBuffer);

 if (hr != HResult.S_OK)

 {

 throw new Exception("Convert failed. Err=" + hr.ToString());

 }

 // get some other things from the input sample

 hr = InputSample.GetSampleDuration(out sampleDuration);

 if (hr != HResult.S_OK)

 {

 throw new Exception("GetSampleDuration failed. Err=" + hr.ToString());

 }

 hr = InputSample.GetTotalLength(out sampleSize);

 if (hr != HResult.S_OK)

 {

 throw new Exception("GetTotalLength failed. Err=" + hr.ToString());

 }

 hr = InputSample.GetSampleTime(out sampleTimeStamp);

 if (hr != HResult.S_OK)

 {

 throw new Exception("GetSampleTime failed. Err=" + hr.ToString());

 }

 // get the attributes from the input sample

 if (InputSample is IMFAttributes)

 sampleAttributes = (InputSample as IMFAttributes);

 else sampleAttributes = null;

 // we have all the information we need to create a new output sample

 sinkWriterSample = TantaWMFUtils.CreateMediaSampleFromBuffer(

 sampleFlags, sampleTimeStamp,

 sampleDuration, inputMediaBuffer,

 sampleSize, sampleAttributes);

 if (sinkWriterSample == null)

 {

 throw new Exception("sinkWriterSample == null");

 }

 // we have a sample, if so is it the first non null one?

 if (isFirstSample)

 {

 Capturing Camera Data

 325

 // yes it is set up our timestamp

 firstSampleBaseTime = sampleTimeStamp;

 isFirstSample = false;

 }

 // rebase the time stamp

 sampleTimeStamp -= firstSampleBaseTime;

 hr = sinkWriterSample.SetSampleTime(sampleTimeStamp);

 if (hr != HResult.S_OK)

 {

 throw new Exception("SetSampleTime failed. Err=" + hr.ToString());

 }

 // write the sample out

 hr = workingSinkWriter.WriteSample(

 sinkWriterVideoStreamId, sinkWriterSample);

 if (hr != HResult.S_OK)

 {

 throw new Exception("WriteSample(b) failed. Err=" + hr.ToString());

 }

 }

 }

 }

 }

 finally

 {

 // clean up

 if (inputMediaBuffer != null)

 {

 Marshal.ReleaseComObject(inputMediaBuffer);

 inputMediaBuffer = null;

 }

 if (sinkWriterSample != null)

 {

 Marshal.ReleaseComObject(sinkWriterSample);

 sinkWriterSample = null;

 }

 // Release the current input sample so we can get another one.

 // the act of setting it to null releases it because the property

 // is coded that way

 InputSample = null;

 }

 return HResult.S_OK;

}

Source: TantaCaptureToScreenAndFile::MFTTantaSampleGrabber_Sync::OnProcessOutput

The lead in to the OnProcessOutput function simply performs the standards actions

required for the return – the flags are set and the InputSample value is given a new

reference and placed in the output structure so it can be returned.

// Set status flags.

outputSampleDataStruct.dwStatus = MFTOutputDataBufferFlags.None;

// The output sample is the input sample. We get a new IUnknown for the Input

// sample since we are going to release it below. The client will release this

// new IUnknown

outputSampleDataStruct.pSample = Marshal.GetIUnknownForObject(InputSample);

... more code

If you are unfamiliar with the reasons behind the above two lines of code you should

review the Raw Data Handling in the Transform section in the Working With

Transforms chapter.

Next, if the Sink Writer exists, we write out the data. Let’s take the simple case in which

there is no timebase rebasing needed.

Capturing Camera Data

326

// give the input sample to the Sink Writer which will write it out.

hr = workingSinkWriter.WriteSample(sinkWriterVideoStreamId, InputSample);

Impressively simple isn’t it. We have a Sink Writer and we simply give the InputSample

to it and it does the work of writing the data to the MP4 file.

If the user does implement the time-base rebase option, then we have a little more

work to do. We cannot just update the timestamp in the existing InputSample sample

because that would totally mess up the Enhanced Video Renderer at the end of the

Pipeline. The EVR needs a consistent sequence of timestamps in the Media Samples it

displays – remember the user can turn the “Record to Disk” option on and off but the

video continuously displays on the form.

Since the InputSample Media Sample must be given back to the Media Session

unchanged, if we are going to give one to the Media Sink with a different timestamp

then we shall have to make a copy. This process is documented in the section below.

CREATING A COPY OF A MEDIA SAMPLE

Continuing on from the previous discussion, the first act of building a new Media Sample

is to get the underlying Media Buffer.

// Get the data buffer from the input sample.

hr = InputSample.ConvertToContiguousBuffer(out inputMediaBuffer);

Nothing too amazing there – we have seen this before. Next we collect some of the

important characteristics of the InputSample object into temporary variables.

// get some other things from the input sample

hr = InputSample.GetSampleDuration(out sampleDuration);

hr = InputSample.GetTotalLength(out sampleSize);

hr = InputSample.GetSampleTime(out sampleTimeStamp);

hr = InputSample.ConvertToContiguousBuffer(out inputMediaBuffer);

We also get the Attributes. Since the IMFSample interface inherits from IMFAttributes

Input Sample is an Attribute Container. We store this value too…

// get the attributes from the input sample

if (InputSample is IMFAttributes) sampleAttributes = (InputSample as IMFAttributes);

else sampleAttributes = null;);

… and then we create the Media Sample with a call to the static

CreateMediaSampleFromBuffer function in the TantaWMFUtils class.

// we have all the information we need to create a new output sample

sinkWriterSample = TantaWMFUtils.CreateMediaSampleFromBuffer(sampleFlags, sampleTimeStamp,

 sampleDuration, inputMediaBuffer,

 sampleSize, sampleAttributes);

The operation of the CreateMediaSampleFromBuffer function was discussed in the

Creating a New Media Sample section of The WMF Components chapter and we will

 Capturing Camera Data

 327

not reproduce that information here. Ultimately the information provided just gives us a

new Media Sample and we can adjust the sample time…

// rebase the time stamp

sampleTimeStamp -= firstSampleBaseTime;

hr = sinkWriterSample.SetSampleTime(sampleTimeStamp);

… and write the copy of the InputSample Media Sample out to the Sink Writer as

before.

// write the sample out

hr = workingSinkWriter.WriteSample(sinkWriterVideoStreamId, sinkWriterSample);

Other than the copy of the Media Sample (which we only had to do because we were

rebasing the time), the entire process is not very difficult to follow.

The various WMF entities that we accumulated during our processing need to be

released.

 // clean up

 if (inputMediaBuffer != null)

 {

 Marshal.ReleaseComObject(inputMediaBuffer);

 inputMediaBuffer = null;

 }

 if (sinkWriterSample != null)

 {

 Marshal.ReleaseComObject(sinkWriterSample);

 sinkWriterSample = null;

 }

 // Release the current input sample so we can get another one.

 // the act of setting it to null releases it because the property

 // is coded that way

 InputSample = null;

As usual, we also null out the InputSample, if a Media Sample was present the base

class will release it at that time.

It should be noted that the above method using a Transform would probably not be the

typical method of simultaneously displaying video data and writing it to disk. A more

standard method would be to implement a “tee” Transform and have two branches

coming off of that – each with identical Media Samples. The EVR would sit at the end of

one branch and a Sample Grabber Sink at the end of the other. However, this

architecture would make it hard to turn the recording functionality on and off as the

TantaCaptureToScreenAndFile application does. Also, you have already seen the Sample

Grabber Sink in action in the Tanta File Copy Sample Projects and so there is not much

more to new information that can be provided there.

 328

Windows Media Foundation:
Getting Started in C#

Appendix I

THE TANTA SAMPLE CODE
The MF.Net library provides a collection of C# sample projects – these are, in general, a

pretty faithful port of the WMF C++ samples and they do demonstrate most of the

fundamental techniques. The major problem with them is that they are structured in

the C++ way and that way is not super intuitive or familiar to C# users. The MF.Net

sample code is, fairly complex, re-entrant with multiple classes per file and some of

them even use “old school” C++ mechanisms which put messages on the Windows

Message Pump to send notifications and events. None of this, including the traditional

C++ sparsity of comments, really serves to assist a person new to the technology in

learning Windows Media Foundation in C#.

In order to provide demonstrations of various WMF techniques for this book, a new set

of sample programs have been written. Some, such as the

TantaCaptureToFileViaReaderWriter, are just re-factored and commented versions of

the MF.Net examples. Others, such as the TantaCaptureToScreenAndFile contain

techniques not demonstrated anywhere.

There are 15 Tanta Sample Projects and each serves to illustrate a WMF concept. In

addition, there are many more comments in the code, there is only one class per file

and any event mechanisms use the far simpler C# Delegate/Event system. This chapter

 The Tanta Sample Code

 329

will provide a summary description of each Tanta Sample – the comments and

readme.txt file associated with each project will provide much more information.

It should be noted that the much of the useful, common code has been factored out

into a utility library named TantaCommon. This library is intended to provide a resource

which can be included in a C# WMF.net application in order to provide supporting

functionality. This library also contains useful controls which can do things like pick a

video format or act as a self-contained video display engine.

As you read through the various sections in this book you will see code blocks (in a blue

background) which demonstrate various concepts. The C# source in these code blocks

are all taken from the Tanta Sample Applications and the bottom of each code block will

contain a reference to the project and file from which the code was derived.

Source: TantaCommon::ctlTantaEVRFilePlayer::CreateOutputNode

DOWNLOADING THE TANTA SAMPLE PROJECTS

The Tanta Sample Projects are open source and released under the MIT License. It

should be noted that some parts of the code in the Tanta Sample Projects are based on

the MF.Net samples and that code, in turn, is derived from the original Microsoft

samples. These have been placed in the public domain without copyright.

You can download, clone or fork the Tanta Sample Projects at the following address:

https://github.com/OfItselfSo/Tanta

A selection of sample MP3 and MP4 files are available at the root of the Tanta Sample

Application repository. All of the Tanta Sample Projects expect, by default, to read and

write to a directory named "C:\Dump". You can save yourself a bit of typing if you create

that directory and copy the sample files there.

TANTA SAMPLE APPLICATIONS

TantaAudioFileCopyViaPipelineAndWriter – Demonstrates the Hybrid

Architecture by copying a single stream (audio) MP3 file. This application

may not work on Windows 7 due to codec unavailability.

TantaAudioFileCopyViaPipelineMP3Sink – Demonstrates the Pipeline

Architecture by copying a single stream (audio) MP3 file.

TantaAudioFileCopyViaReaderWriter – Demonstrates the Reader-Writer

Architecture by copying a single stream (audio) MP3 file. This application

may not work on Windows 7 due to codec unavailability.

The Tanta Sample Code

330

TantaCaptureToFileViaReaderWriter – Uses a Reader-Writer Architecture to

capture video directly to a file.

TantaCaptureToScreenAndFile – Uses a Hybrid Architecture to display video

on the screen and, optionally, capture it to a file.

TantaFilePlaybackAdvanced – Uses the Pipeline Architecture to play a media

file containing audio and video tracks. This application uses the

ctlTantaEVRFilePlayer control from the TantaCommon library and

demonstrates various Pipeline control mechanisms such as Pause, Fast-

Forward, Jump Scrolling and volume control etc.

TantaFilePlaybackSimple - Uses the Pipeline Architecture to play a media file

containing audio and video tracks. This application uses the

ctlTantaEVRStreamDisplay control from the TantaCommon library to

demonstrate simple audio and video playback with multiple streams.

TantaTransformDirect - Uses the Pipeline Architecture to demonstrate how

to use the Tanta Transform Base classes to build and add Transforms to a

Topology. This application contains Transforms which count the video

frames, convert the image to grayscale or write text on the video display

– both Synchronous and Asynchronous Mode Transforms are

demonstrated.

TantaTransformInDLLClient – A Pipeline Architecture client which uses a DLL

based Transform. This application also demonstrates various methods

the client application can use to communicate with DLL based

Transforms.

TantaTransformInDLL – A project which creates a Transform as a DLL and

also, optionally, registers it on the system. The Transform in this

application rotates or mirrors the video on display.

TantaTransformPicker – A project which uses the

ctlTantaTransformPicker control in the TantaCommon library to

enumerate and display the capabilities of the Transforms registered on

the system.

TantaVideoFileCopyViaPipelineAndWriter – Demonstrates the Hybrid

Architecture by copying a two stream (audio and video) MP4 file. This

application may not work on Windows 7 due to codec unavailability.

TantaVideoFileCopyViaPipelineMP4Sink – Demonstrates the Pipeline

Architecture by copying a two stream (audio and video) MP4 file.

TantaVideoFileCopyViaReaderWriter – Demonstrates the Reader-Writer

Architecture by copying a two stream (audio and video) MP4 file. This

application may not work on Windows 7 due to codec unavailability.

 The Tanta Sample Code

 331

TantaVideoFormats – Uses the ctlTantaVideoPicker control from the

TantaCommon library to show the video formats offered by the video

capture devices (webcams) on the PC.

 332

Windows Media Foundation:
Getting Started in C#

Appendix II

CONVERTING BETWEEN C++ AND C# CODE

EXAMPLES
You will find help and sample code online for Windows Media Foundation in C++ and

almost nothing for MF.Net and C#. Do not despair! It is usually quite possible to convert

between the two fairly easily and pretty much any technique you might find which

works in WMF with C++ will also work in MF.Net and C#. You just have to know how to

translate.

In general if you see a C++ pointer call with an arrow operator (->) like the one below…

float rate = 0;

BOOL bThin;

hr = pRateControl->GetRate(&bThin, &rate);

…you can rather easily replace it with an equivalent MF.Net call using a dot operator (.)

like the one below…

float currentRate = 0;

bool isThinned = false;

hr = rateControlService.GetRate(ref isThinned, out currentRate);

 Converting Between C++ and C# Code Examples

 333

Since all object variables are essentially references in C#, the translation from C++

pointer to C# object name works rather well. This is true too of the C++ & reference

operator. In general, when you see the & reference operator you can just use a variable

name for a value type and apply the out key word. You can see an example of this in the

usage of the currentRate parameter above. It is interesting to note that, in the above

example, the isThinned parameter is implemented as a ref and not an out. This is

because even though it is a bool and a value type the same as the previous float

variable, it is actually an in-out parameter on the WMF call. Admittedly though, it is not

terribly obvious from looking at the C++ code that you have to treat it that way.

Fortunately, there are not too many of these and a bit of playing about or looking at the

source (one of the great things about open source) will soon put you right.

Here is a list of some of the things you might run across.

CODE CONVERSIONS IN GENERAL FUNCTION CALLS

GETTING A BOOL

C++ Prototype:

HRESULT GetStreamDescriptorByIndex(

 [in] DWORD dwIndex,

 [out] BOOL *pfSelected,

 [out] IMFStreamDescriptor **ppDescriptor);

C++ Example:

BOOL fSelected = FALSE;

HRESULT hr = pPD->GetStreamDescriptorByIndex(iStream, &fSelected, &pSD);

MF.Net Prototype:

HResult GetStreamDescriptorByIndex(

 int dwIndex,

 out bool pfSelected,

 out IMFStreamDescriptor ppDescriptor);

MF.Net C# Example:

bool fSelected = false;

hr = sourcePD.GetStreamDescriptorByIndex(iStream, out fSelected, out pSourceSD);

SETTING A BOOL

C++ Prototype:

HRESULT SetMute([in] const BOOL bMute);

C++ Example:

BOOL wantMuted = FALSE;

pSimpleAudioService->SetMute(wantMuted);

Converting Between C++ and C# Code Examples

334

MF.Net Prototype:

HResult SetMute(bool bMute);

MF.Net C# Example:

bool wantMuted = true;

hr = simpleAudioService.SetMute(wantMuted);

GETTING AN ENUM

C++ Prototype:

HRESULT GetUINT32([in] REFGUID guidKey, [out] UINT32 *punValue));

HRESULT CreateObjectFromURL(

 [in] LPCWSTR pwszURL,

 [in] DWORD dwFlags,

 [in] IPropertyStore *pProps,

 [out] MF_OBJECT_TYPE *pObjectType,

 [out] IUnknown **ppObject

);

C++ Example:

HRESULT hr = pEvent->GetUINT32(MF_EVENT_TOPOLOGY_STATUS, &status);

HRESULT hr = pSourceResolver->CreateObjectFromURL(

 sURL, // URL of the source.

 MF_RESOLUTION_MEDIASOURCE, // Create a source object.

 NULL, // Optional property store.

 &ObjectType, // Receives the created object type.

 &pSource // Receives a pointer to the media source.

);

MF.Net Prototype:

HResult GetUINT32(Guid guidKey, out int punValue);

HResult CreateObjectFromURL(

 string pwszURL,

 MFResolution dwFlags,

 IPropertyStore pProps,

 out MFObjectType pObjectType,

 out object ppObject);

MF.Net C# Example:

int i;

MFTopoStatus topoStatus = MFTopoStatus.Invalid; // this is an enum

hr = pEvent.GetUINT32(MFAttributesClsid.MF_EVENT_TOPOLOGY_STATUS, out i);

topoStatus = (MFTopoStatus)i;

MFObjectType ObjectType = MFObjectType.Invalid; // enum

hr = pSourceResolver.CreateObjectFromURL(

 sURL, // URL of the source.

 MFResolution.MediaSource, // Create a source object.

 null, // Optional property store.

 out ObjectType, // Receives the created object type.

 out pSource // Receives a pointer to the media source.

);

SETTING AN ENUM

C++ Prototype:

HRESULT MFCreateTopologyNode(

 MF_TOPOLOGY_TYPE NodeType,

 IMFTopologyNode **ppNode);

C++ Example:

 Converting Between C++ and C# Code Examples

 335

IMFTopologyNode *pNode = NULL;

HRESULT hr = MFCreateTopologyNode(MF_TOPOLOGY_TRANSFORM_NODE, &pNode);

MF.Net Prototype:

public static HResult MFCreateTopologyNode(MFTopologyType NodeType,

 out IMFTopologyNode ppNode);

MF.Net C# Example:

IMFTopologyNode videoTransformNode = null;

HResult hr = MFExtern.MFCreateTopologyNode(MFTopologyType.TransformNode,

 out videoTransformNode);

GETTING A GUID

C++ Prototype:

HRESULT GetMajorType([out] GUID *pguidMajorType);

C++ Example:

GUID guidMajorType;

hr = pHandler->GetMajorType(&guidMajorType);

MF.Net Prototype:

HResult GetMajorType(out Guid pguidMajorType);

MF.Net C# Example:

Guid majorType = Guid.Empty;

hr = mediaTypeObj.GetMajorType(out majorType);

SETTING A GUID

C++ Prototype:

HRESULT MFGetService(

 IUnknown *punkObject,

 REFGUID guidService,

 REFIID riid,

 LPVOID *ppvObject

);

C++ Example:

MFGetService(session, MR_VIDEO_RENDER_SERVICE, IID_VideoDisplayControl,

(void**)&service);

MF.Net Prototype:

HResult MFGetService(object punkObject, Guid guidService, Guid riid, out object

ppvObject);

MF.Net C# Example:

hr = MFExtern.MFGetService(

 mediaSession,

 MFServices.MR_VIDEO_RENDER_SERVICE,

 typeof(IMFVideoDisplayControl).GUID,

 out evrVideoService

);

GETTING AN INT

C++ Prototype:

Converting Between C++ and C# Code Examples

336

HRESULT GetStreamDescriptorCount([out] DWORD *pdwDescriptorCount);

C++ Example:

DWORD cSourceStreams = 0;

spPD->GetStreamDescriptorCount(&cSourceStreams);

MF.Net Prototype:

HResult GetStreamDescriptorCount(out int pdwDescriptorCount);

MF.Net C# Example:

int cSourceStreams = 0;

hr = pSourcePD.GetStreamDescriptorCount(out cSourceStreams);

SETTING AN INT

C++ Prototypes:

HRESULT SetUINT32([in] REFGUID guidKey, [in] UINT32 unValue);

C++ Examples:

int bitrate;

hr = pType2.SetUINT32(MFAttributesClsid.MF_MT_AVG_BITRATE, bitrate);

MF.Net Prototypes:

HResult SetUINT32(Guid guidKey, int unValue);

MF.Net C# Examples:

int targetBitRate;

hr = encoderType.SetUINT32(MFAttributesClsid.MF_MT_AVG_BITRATE, targetBitRate);

GETTING AN INTPTR

C++ Prototype:

HRESULT GetCurrentImage(

 [in, out] BITMAPINFOHEADER *pBih,

 [out] BYTE **pDib,

 [out] DWORD *pcbDib,

 [in, out] LONGLONG *pTimeStamp

);

C++ Example:

BITMAPINFOHEADER lpHeader = { 0 };

BYTE* lpCurrImage = NULL;

DWORD bitmapSize = 0;

LONGLONG timestamp = 0;

lpHeader.biSize = sizeof(BITMAPINFOHEADER);

hr = pDisplay->GetCurrentImage(&lpHeader, &lpCurrImage, &bitmapSize, ×tamp)));

MF.Net Prototype:

HResult GetCurrentImage(BitmapInfoHeader pBih,

 out IntPtr pDib,

 out int pcbDib,

 out long pTimeStamp);

MF.Net C# Example:

BitmapInfoHeader workingBitmapInfoHeader = new BitmapInfoHeader();

IntPtr bitmapData = IntPtr.Zero;

int bitmapDataSize = 0;

long bitmapTimestamp = 0;

 Converting Between C++ and C# Code Examples

 337

workingBitmapInfoHeader.Size = Marshal.SizeOf(typeof(BitmapInfoHeader));

hr = evrVideoDisplay.GetCurrentImage(

 workingBitmapInfoHeader,

 out bitmapData,

 out bitmapDataSize,

 out bitmapTimestamp);

// bitmapData is an IntPtr. Use Marshal to copy the video data out

// into a byte array, bitmapDataSize is the length of bitmapData

byte[] managedArray = new byte[bitmapDataSize];

Marshal.Copy(bitmapData, managedArray, 0, bitmapDataSize);

GETTING A LONG:

C++ Prototype:

HRESULT GetCurrentImage(

 [in, out] BITMAPINFOHEADER *pBih,

 [out] BYTE **pDib,

 [out] DWORD *pcbDib,

 [in, out] LONGLONG *pTimeStamp

);

C++ Example:

BITMAPINFOHEADER lpHeader = { 0 };

BYTE* lpCurrImage = NULL;

DWORD bitmapSize = 0;

LONGLONG timestamp = 0;

lpHeader.biSize = sizeof(BITMAPINFOHEADER);

hr = pDisplay->GetCurrentImage(&lpHeader, &lpCurrImage, &bitmapSize, ×tamp)));

MF.Net Prototype:

HResult GetCurrentImage(BitmapInfoHeader pBih,

 out IntPtr pDib,

 out int pcbDib,

 out long pTimeStamp);

MF.Net C# Example:

BitmapInfoHeader workingBitmapInfoHeader = new BitmapInfoHeader();

IntPtr bitmapData = IntPtr.Zero;

int bitmapDataSize = 0;

long bitmapTimestamp = 0;

workingBitmapInfoHeader.Size = Marshal.SizeOf(typeof(BitmapInfoHeader));

hr = evrVideoDisplay.GetCurrentImage(

 workingBitmapInfoHeader,

 out bitmapData,

 out bitmapDataSize,

 out bitmapTimestamp);

// bitmapData is an IntPtr. Use Marshal to copy the video data out

// into a byte array, bitmapDataSize is the length of bitmapData

byte[] managedArray = new byte[bitmapDataSize];

Marshal.Copy(bitmapData, managedArray, 0, bitmapDataSize);

SETTING AN MFINT (DWORD PTR)

C++ Prototypes:

HRESULT GetStreamCount([out] DWORD *pcInputStreams, [out] DWORD *pcOutputStreams);

C++ Examples:

<not available>

MF.Net Prototypes:

Converting Between C++ and C# Code Examples

338

public HResult GetStreamCount(MFInt pcInputStreams, MFInt pcOutputStreams);

MF.Net C# Examples:

public HResult GetStreamCount(MFInt pcInputStreams, MFInt pcOutputStreams)

{

 // This template requires a fixed number of input and output

 // streams (1 for each).

 if (pcInputStreams != null)

 {

 pcInputStreams.Assign(1);

 }

 ...

GETTING A STRING

C++ Prototype:

HRESULT GetAllocatedString([in] REFGUID guidKey,

 [out] LPWSTR *ppwszValue,

 [out] UINT32 *pcchLength);

C++ Example:

WCHAR *g_pwszSymbolicLink = NULL;

UINT32 g_cchSymbolicLink = 0;

pActivate->GetAllocatedString(

 MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_SYMBOLIC_LINK,

 &g_pwszSymbolicLink,

 &g_cchSymbolicLink);

MF.Net Prototype:

HResult GetAllocatedString(Guid guidKey, out string ppwszValue, out int pcchLength);

MF.Net C# Example:

int iSize;

string pwszSymbolicLink;

hr = pActivate.GetAllocatedString(

MFAttributesClsid.MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_SYMBOLIC_LINK,

 out pwszSymbolicLink,

 out iSize);

SETTING A STRING

C++ Prototypes:

HRESULT CreateObjectFromURL(

 [in] LPCWSTR pwszURL,

 [in] DWORD dwFlags,

 [in] IPropertyStore *pProps,

 [out] MF_OBJECT_TYPE *pObjectType,

 [out] IUnknown **ppObject

);

C++ Examples:

HRESULT hr = pSourceResolver->CreateObjectFromURL(

 sURL, // URL of the source.

 MF_RESOLUTION_MEDIASOURCE, // Create a source object.

 NULL, // Optional property store.

 &ObjectType, // Receives the created object type.

 &pSource // Receives a pointer to the media source.

);

MF.Net Prototypes:

HResult CreateObjectFromURL(

 string pwszURL,

 Converting Between C++ and C# Code Examples

 339

 MFResolution dwFlags,

 IPropertyStore pProps,

 out MFObjectType pObjectType,

 out object ppObject);

MF.Net C# Examples:

string sUrl = @"C:\Dump\videoFile.mp4";

hr = pSourceResolver.CreateObjectFromURL(

 sURL, // URL of the source.

 MFResolution.MediaSource, // Create a source object.

 null, // Optional property store.

 out ObjectType, // Receives the created object type.

 out pSource // Receives a pointer to the media source.

);

GETTING A STRUCT

C++ Prototype:

HRESULT GetCurrentImage(

 [in, out] BITMAPINFOHEADER *pBih,

 [out] BYTE **pDib,

 [out] DWORD *pcbDib,

 [in, out] LONGLONG *pTimeStamp

);

C++ Example:

BITMAPINFOHEADER lpHeader = { 0 };

BYTE* lpCurrImage = NULL;

DWORD bitmapSize = 0;

LONGLONG timestamp = 0;

lpHeader.biSize = sizeof(BITMAPINFOHEADER);

hr = pDisplay->GetCurrentImage(&lpHeader, &lpCurrImage, &bitmapSize, ×tamp)));

MF.Net Prototype:

HResult GetCurrentImage(BitmapInfoHeader pBih,

 out IntPtr pDib,

 out int pcbDib,

 out long pTimeStamp);

MF.Net C# Example:

BitmapInfoHeader workingBitmapInfoHeader = new BitmapInfoHeader();

IntPtr bitmapData = IntPtr.Zero;

int bitmapDataSize = 0;

long bitmapTimestamp = 0;

workingBitmapInfoHeader.Size = Marshal.SizeOf(typeof(BitmapInfoHeader));

hr = evrVideoDisplay.GetCurrentImage(

 workingBitmapInfoHeader,

 out bitmapData,

 out bitmapDataSize,

 out bitmapTimestamp);

SETTING A STRUCT
HRESULT GetCurrentImage(

 [in, out] BITMAPINFOHEADER *pBih,

 [out] BYTE **pDib,

 [out] DWORD *pcbDib,

 [in, out] LONGLONG *pTimeStamp

);

C++ Example:

BITMAPINFOHEADER lpHeader = { 0 };

BYTE* lpCurrImage = NULL;

DWORD bitmapSize = 0;

LONGLONG timestamp = 0;

Converting Between C++ and C# Code Examples

340

lpHeader.biSize = sizeof(BITMAPINFOHEADER);

hr = pDisplay->GetCurrentImage(&lpHeader, &lpCurrImage, &bitmapSize, ×tamp)));

MF.Net Prototype:

HResult GetCurrentImage(BitmapInfoHeader pBih,

 out IntPtr pDib,

 out int pcbDib,

 out long pTimeStamp);

MF.Net C# Example:

BitmapInfoHeader workingBitmapInfoHeader = new BitmapInfoHeader();

IntPtr bitmapData = IntPtr.Zero;

int bitmapDataSize = 0;

long bitmapTimestamp = 0;

workingBitmapInfoHeader.Size = Marshal.SizeOf(typeof(BitmapInfoHeader));

hr = evrVideoDisplay.GetCurrentImage(

 workingBitmapInfoHeader,

 out bitmapData,

 out bitmapDataSize,

 out bitmapTimestamp);

GETTING A TYPED OBJECT

C++ Prototype:

HRESULT MFCreateTopologyNode(

 In MF_TOPOLOGY_TYPE NodeType,

 Out IMFTopologyNode **ppNode);

C++ Example:

IMFTopologyNode *pNode = NULL;

HRESULT hr = MFCreateTopologyNode(MF_TOPOLOGY_TRANSFORM_NODE, &pNode);

MF.Net Prototype:

public static HResult MFCreateTopologyNode(

 MFTopologyType NodeType,

 out IMFTopologyNode ppNode);

MF.Net C# Example:

IMFTopologyNode pNode = null;

hr = MFExtern.MFCreateTopologyNode(MFTopologyType.SourcestreamNode, out pNode);

SETTING A TYPED OBJECT

C++ Prototype:

HRESULT AddNode([in] IMFTopologyNode *pNode);

C++ Example:

IMFTopologyNode *pNode = NULL;

// ... the *pNode gets instantiated by other calls

hr = pTopology->AddNode(pNode);

MF.Net Prototype:

HResult AddNode(IMFTopologyNode pNode);

MF.Net C# Example:

IMFTopologyNode pSourceNode = null;

// ... the pSourceNode gets instantiated by other calls

hr = pTopology.AddNode(pSourceNode);

 Converting Between C++ and C# Code Examples

 341

MISC. CODE CONVERSIONS

CONVERTING A BYTE[] TO A STRUCT

This operation is surprisingly difficult in C#. There are a few ways this can be done

(serialization of streams & etc.). Probably the simplest method is to use the static

functions in the Marshal class. Below is a ConvertStructureToByteArray() function

from the TantaWMFUtils library.

public static void ConvertByteArrayToStructure(byte[] bytearray, ref object

convertedStruct)

{

 int len = Marshal.SizeOf(convertedStruct);

 IntPtr i = Marshal.AllocHGlobal(len);

 Marshal.Copy(bytearray, 0, i, len);

 convertedStruct = Marshal.PtrToStructure(i, convertedStruct.GetType());

 Marshal.FreeHGlobal(i);

}

CONVERTING A STRUCT TO A BYTE[]

As with the reverse operation described above, this operation is also surprisingly

difficult in C#. There are a few ways this can be done (serialization of streams & etc.).

Probably the simplest method is to use the static functions in the Marshal class. Below is

a ConvertStructureToByteArray() function from the TantaWMFUtils library.

public static byte[] ConvertStructureToByteArray(object structToConvert)

{

 int len = Marshal.SizeOf(structToConvert);

 byte[] arr = new byte[len];

 IntPtr ptr = Marshal.AllocHGlobal(len);

 Marshal.StructureToPtr(structToConvert, ptr, true);

 Marshal.Copy(ptr, arr, 0, len);

 Marshal.FreeHGlobal(ptr);

 return arr;

}

COPYING THE DATA FROM AN INTPTR

The data pointed to by an IntPtr will be in unmanaged memory. The Marshal.Copy()

function can be used to copy the data into a datatype usable by C#. Note that when

dealing with Windows Media Foundation, the memory pointed by an IntPtr returned

from a function call usually has to be released. This operation is not shown in the

sample code below.

// bitmapData is an IntPtr. Use Marshal to copy the video data out

// into a byte array, bitmapDataSize is the length of bitmapData

byte[] managedArray = new byte[bitmapDataSize];

Marshal.Copy(bitmapData, managedArray, 0, bitmapDataSize);

Converting Between C++ and C# Code Examples

342

GETTING THE SIZE OF A STRUCT

Unlike C or C++, C# cannot directly take the size of a struct. However the Marshal class

provides a variety of static methods for this purpose and it is simple to use it for the

task. The code below shows how to get the size of a Struct.

BitmapInfoHeader workingBitmapInfoHeader = new BitmapInfoHeader();

int bitMapHeaderSize = Marshal.SizeOf(typeof(BitmapInfoHeader));

CONVERTING AN ARRAY OF STRUCTS

Certain operations in WMF will return an array of structures in the form of a binary blob.

This data can be converted for use using the technique below. In this particular

example, an array of MFT_REGISTER_TYPE_INFO structs is returned when querying a

Transform Activator for a list of its input media types.

MFTRegisterTypeInfo rtInfoList = new List<MFTRegisterTypeInfo>();

// get the data from the activator. This comes out in a blob which is actually

// an array of MFT_REGISTER_TYPE_INFO structs.

HResult hr = activatorObject.GetAllocatedBlob(

 MFAttributesClsid.MFT_INPUT_TYPES_Attributes,

 out outBlob,

 out outSize);

if(hr != HResult.S_OK) return HResult.E_FAIL;

// get the size of a MFTRegisterTypeInfo class. We have to

// use Marshal because Guids are supposedly not of fixed size.

// The only reason this works is because the MFTRegisterTypeInfo

// class has a "StructLayout(LayoutKind.Sequential)" decoration

int sizeOfMFTRegisterTypeInfo = Marshal.SizeOf(typeof(MFTRegisterTypeInfo));

if(sizeOfMFTRegisterTypeInfo<=0) return HResult.E_FAIL;

// calculate the number of records in the blob

int numRecords = outSize / sizeOfMFTRegisterTypeInfo;

// to get at the information in the blob, we convert the start of each

// MFT_REGISTER_TYPE_INFO struct to an IntPtr then copy it into a

// MFTRegisterTypeInfo class

for (int i = 0; i < numRecords; i++)

{

 // get a pointer to the next MFT_REGISTER_TYPE_INFO struct

 IntPtr intPtrToStruct = new IntPtr(outBlob.ToInt64() + i *

sizeOfMFTRegisterTypeInfo);

 // copy the contents at that pointer into a MFTRegisterTypeInfo class

 MFTRegisterTypeInfo tmpRTInfo =

 Marshal.PtrToStructure<MFTRegisterTypeInfo>(intPtrToStruct);

 if (tmpRTInfo == null) continue;

 // add it to our container

 rtInfoList.Add(tmpRTInfo);

}

